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Abstract. Accurate remaining useful life (RUL) prediction hinges on
the quality of health indicators (HIs), yet existing methods often fail
to disentangle complex degradation mechanisms in multi-sensor systems
or quantify uncertainty in HI reliability. This paper introduces a novel
framework for HI construction, advancing three key contributions. First,
we adapt Reconstruction along Projected Pathways (RaPP) as a health
indicator (HI) for RUL prediction for the first time, showing that it out-
performs traditional reconstruction error metrics. Second, we show that
augmenting RaPP-derived HIs with aleatoric and epistemic uncertainty
quantification (UQ)—via Monte Carlo dropout and probabilistic latent
spaces— significantly improves RUL-prediction robustness. Third, and
most critically, we propose indicator groups, a paradigm that isolates sen-
sor subsets to model system-specific degradations, giving rise to our novel
method, I-GLIDE which enables interpretable, mechanism-specific diag-
nostics. Evaluated on data sourced from aerospace and manufacturing
systems, our approach achieves marked improvements in accuracy and
generalizability compared to state-of-the-art HI methods while provid-
ing actionable insights into system failure pathways. This work bridges
the gap between anomaly detection and prognostics, offering a princi-
pled framework for uncertainty-aware degradation modeling in complex
systems.

Keywords: Health Indicator · Latent Space · Degradation Modeling.

1 Introduction

Accurate RUL prediction is critical for enabling condition-based maintenance in
complex engineering systems. A cornerstone of this task lies in deriving inter-
pretable Health Indicators (HIs) that reliably capture subsystem degradation
patterns. While autoencoder (AE)-based reconstruction errors have emerged
as a popular HI-construction method, existing approaches suffer from two key
limitations: (1) sensitivity to noise and epistemic uncertainty, which obscures
degradation signals, and (2) a lack of granularity in disentangling subsystem-
specific degradation behaviors. This work addresses these gaps by introducing a
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novel Ensemble of Indicators framework, which advances traditional AE architec-
tures through multi-head encoders and decoders designed to isolate degradation
patterns across subsystems (e.g., fan, high-pressure compressor). We call this
method I-GLIDE: Input Groups for Latent Health Indicators in Degradation
Estimation.

Contrary to prior studies that treat UQ as an auxiliary feature, our pro-
posed method I-GLIDE leverages this uncertainty to enhance HI robustness
while maintaining explainability. We rigorously benchmark our approach against
established latent-space HI methods—including Reconstruction along Projected
Pathways (RaPP) [18, 30] and Monte Carlo (MC) dropout-based uncertainty
estimation [9] demonstrating superior RUL prediction accuracy on the NASA
C-MAPSS turbofan dataset [29] and the MILL NASA degradation dataset [2].
Our contributions are threefold:

1. Systematic Analysis: We identify and characterize critical limitations of
existing AE derived HIs, notably their vulnerability to noise and inability to
isolate subsystem-level degradation.

2. Uncertainty-Aware Benchmarking: By integrating aleatoric and epis-
temic UQ into latent-HI construction, we improve RUL estimation.

3. I-GLIDE Framework: We propose a multi-head AE architecture where
each encoder-decoder pair targets distinct subsystems, enabling granular,
explainable HI extraction, achieving state-of-the-art RUL prediction while
providing insights into degradation mechanisms.

Table 1. Notation used in the paper.

Symbol Description
σa, σe Aleatoric, Epistemic uncertainty
F Function mapping HIs to a RUL
X Input data set with entries x
x̂ reconstruction of input x, also noted as the target variable y
WD Decoder weight parameters
g ∈ G Set of sub-complex systems indices g
z Latent space of the AE
y Target variable
hg,l hidden layer of group g hg, at position l
dg(x) specific distance vector of groups hg(x)− hg(x̂)

2 Background and Related Works

2.1 RUL Prognostics and Health Indicators

Most industrial complex systems are built by the interdependencies of sub-
complex systems; degradation in one component can propagate cascading effects,
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triggering operational disruptions, escalating costs, safety risks, and—in extreme
cases—catastrophic system-wide failures. As a result, the accurate RUL estima-
tion of a complex system is heavily studied in engineering, particularly where
costs and safety are associated. Early methodologies relied on stochastic ap-
proaches, such as threshold-based degradation signatures or empirical lifetime
metrics (e.g., flight cycles or mileage) [8]. While methods prioritized identify-
ing failure precursors or tracking cumulative usage they lacked adaptability to
complex, non-linear degradation patterns. Timely and precise RUL prognostics
not only curtails downtime and waste but also enables proactive maintenance,
aligning operational decisions with evolving system health.

2.2 Evolution of HI Extraction

Early HI derivation prioritized interpretability through handcrafted statistical
features (e.g., signal variance) or physics-based models. Using a a Bayesian
framework enriched by expert knowledge to estimate failure probabilities, La-
caille [20] proposed a normalization pretreatment to derive standardized sig-
natures interpretable as HIs by domain experts. However, such approaches de-
pended heavily on predefined failure patterns and manual refinement, limiting
their adaptability to heterogeneous operational conditions in non-stationary en-
vironments [6]. Hybrid approaches combined Kalman filters with NNs to model
state-of-charge degradation [12], while others used neural networks (NNs) to
learn a RUL representation to derive syncretic HIs [33]. Zhao et al. [35] used
degradation pattern learning in the case of turbofan engines to predict the RUL.
They extracted degradation patterns that helped characterize the nature of the
degradation, which can itself be seen as a HI. Furthermore, their method was
shown to improve the predictive capability of a NN towards RUL estimation.

AEs later emerged as a cornerstone method, using reconstruction errors from
healthy-state training as implicit HIs [14, 24, 10]. Despite progress, these meth-
ods often assumed linear degradation trends or predefined failure modes, limiting
adaptability to non-stationary systems. Other NN approaches later enabled data-
driven prognostics, with Long Short-Term Memory (LSTM) architectures cap-
turing temporal degradation in batteries [31] and turbofans [22]. However, early
frameworks often bundled HI estimation with RUL prediction, risking conflated
objectives where HIs were implicitly tuned to downstream tasks rather than in-
trinsic degradation patterns. This coupling became particularly evident in meth-
ods that embedded domain assumptions directly into HI design. For example,
Jing et al. [16] incorporated exponential normalization of sensor data as an induc-
tive bias in a Variational Autoencoder (VAE), aligning the HI with the CMAPSS
dataset’s predefined degradation trends. While this yielded robust RUL predic-
tions, it effectively tied the HI to the target degradation profile, limiting adapt-
ability to systems with non-exponential behaviors. Pillai and Vadakkepat [27]
addressed this issue more directly, proposing a two-stage architecture that decou-
pled HI feature discovery from RUL regression. Their approach improved gen-
eralizability by isolating degradation modeling from task-specific optimization,
though challenges persisted in interpretability and subsystem-specific analysis.
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Latent-Space HI Refinement More recent advances focused on refining HI
quality through latent-space analysis. Kim et al. [18] introduced the RaPP
method, projecting latent representations from an AE’s encoder to compute dis-
tance metrics that outperformed classical reconstruction errors. González-Muñiz
et al. [11] validated this paradigm shift, demonstrating that latent-space met-
rics from RaPP consistently surpass input-space approaches in HI quality. Their
work highlighted the latent space between encoder and decoder as a rich source
of degradation signals, though subsystem-specific trends remained obscured by
holistic aggregation. Despite these innovations, mapping HIs to RUL remains
fraught with challenges. Many approaches employ black-box models or simplis-
tic linear mappings [23], neglecting context-dependent HI interpretations under
varying operational conditions. For instance, a high reconstruction error might
indicate severe degradation in one context but sensor noise in another—a nu-
ance often lost in end-to-end frameworks. Recent benchmarking by Rombach et
al. [28] underscores this gap, advocating for feature engineering to improve HI
interpretability while maintaining correlation with ground truth degradation.

2.3 Uncertainty-Aware Subsystem Modeling

Uncertainty quantification in NNs can be achieved through MC dropout [1].
Variational AEs (VAEs) [3], can disentangle aleatoric uncertainty (inherent data
noise) and epistemic uncertainty (model ambiguity) to isolate distinct sources
of unpredictability. While probabilistic frameworks optimize maintenance via
confidence intervals [25], UQ is often treated as a post-hoc refinement rather than
a core HI component. Deterministic AEs, for instance, cannot isolate aleatoric
uncertainty due to fixed latent spaces—a limitation addressed by variational
architectures [32]. Ensemble methods further reduce uncertainty [34], yet their
application to subsystem-aware HIs remains underexplored.

2.4 Monotonicity and Degradation Dynamics

RUL is typically modeled as a monotonic function of the State of Health (SOH),
declining from 100% (pristine) to 0% (failure). While mechanical wear rarely re-
verses, subsystem interactions (e.g., turbine degradation accelerating fan wear)
introduce non-stationary dynamics [4]. This necessitates HIs that isolate local-
ized degradation while preserving system-wide coherence—a gap addressed by
our subsystem-aware architecture. Similarly, we model RUL estimation as a func-
tion F of the HIs, mapping their values to the corresponding RUL.

3 Proposed Approach: I-GLIDE

In order to produce better HIs, we build on foundational assumptions about
degradation dynamics and their statistical relationships to RUL established ear-
lier, and we begin by formalizing our UQ for prognostic tasks. We then introduce
a novel architecture that disentangles subsystem-specific degradation signatures
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by managing sensor groups and operational variabilities at the component level,
while adapting the RaPP method to mitigate cross-component interference. Fi-
nally, we propose a data-driven strategy to validate constructed HIs through
direct RUL estimation, demonstrating their prognostic utility. Each phase is
rigorously evaluated via empirical case studies (Section 4), ensuring robustness
across diverse degradation scenarios. Our notation is summarized in Table 1.

3.1 Uncertainty Quantification

Uncertainty in prognostics arises from two primary sources: aleatoric (σa), in-
herent to data noise and irreducible even with additional observations, and epis-
temic (σe), stemming from model limitations and reducible through improved
architectures or training [15, 17].

In order to produce high-quality HIs we make use of the UQ capabilities of
AE architectures with an underlying change. Our epistemic UQ focuses on the
scalar reconstruction error ϵ = ∥x− x̂∥2 instead of the full-dimensional decoder
output x̂ = y. This aligns with prognostics frameworks where ϵ serves as a health
indicator (HI), reducing dimensionality for easier integration with downstream
RUL prediction models (e.g., F). We avoided using raw y (the reconstruction)
as a standalone HI directly because it is 1) outperformed by RaPP methods [18,
11] and 2) our RUL predictor model F showed high variance in selecting the
best variables when both RaPP and y were fed as inputs. Thus we dropped y as
a HI and instead focused in introducing MC dropout to quantify ϵ uncertainties
as a HI which showed to be a better complement. Therefore, the disentangled
UQ is performed through the aggregation of our ϵ1..ϵn over n MC samples in
our VAE architecture:

σa = Var (ϵ1, . . . , ϵn| fixed WD), σe = Var (ϵ1, . . . , ϵn| fixed z).

As z is deterministic, aleatoric uncertainty σa cannot be isolated in AEs,
rendering it undefined. Thus, we can only compute σe in the case of a vanilla
AE. This highlights the advantage of VAEs for joint uncertainty estimation.

3.2 Architecture

Building on the above foundations, our proposed architecture extends the tradi-
tional AE and VAE frameworks by introducing multiple encoder-decoder pairs
for each sensor group, which are then integrated through a shared latent space,
as illustrated in Fig. 1 (3.2). This design addresses the non-stationarity of sensor
signals by disentangling subsystem-specific degradation dynamics in the latent
space. This separation allows us to apply the RaPP [18] method individually
to each encoder. By projecting the activations of the hidden spaces hg(x) corre-
sponding to isolated sensor groups g ∈ G, we aim to achieve more comprehensive
feature extraction, enabling the construction of specific health indicators (HIs).

We derive this architecture with two different latent spaces: the first one
being in the way of traditional AE named I-GLIDEAE, and in the second version



6 Thil et al.

Fig. 1. I-GLIDE Architecture Framework – A: Subsystem-specific encoder-
decoder heads learn distinct latent representations, fused into a shared latent space
z via reconstruction loss (trained on healthy data). B: HIs are extracted using RaPP
metrics [11] and UQ [19] over full trajectories. C: Aggregated HIs are used to predict
RUL, trained via a Random Forest (RF) regressor F .

where the latent is a Gaussian type distribution in the manner of VAEs named
I-GLIDEVAE. In the latter, we can leverage the variational inference aspect of
the architecture.

3.3 Adapting Domain-Specific Latent Space Health Indicators

A main novelty of I-GLIDE is to adapt RaPP [18], traditionally used in mono-
lithic architectures, for each subsystem in our multi-autoencoder framework. By
moving away from the monolithic approach, I-GLIDE computes group-specific
health indicators (HIs) for each sensor group g. Unlike the original RaPP frame-
work, which operates on a single encoder-decoder pair, our architecture inde-
pendently calculates ϵSAP(g) and ϵNAP(g) for each group g, leveraging dedicated
encoders and decoders per subsystem. These components share a cohesive latent
space z, preserving global system coherence while isolating localized anomalies.
For a sensor group g, let hg,l(x) ∈ Rnl denote the activations of the l-th en-
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coder layer (with nl-dimensional output) for input x, and hg,l(x̂g) represent the
reconstructed activations across L layers (l = 1, . . . , L).

We redefine two HIs per sensor group:

ϵSAP(g)(x) = ∥hg(x)− hg(x̂)∥2 (1)

which computes the first RaPP metric: the Simple Aggregation along Path-
way (SAP) [18] as the Euclidean distance between original and reconstructed
activations across all layers l. For the second RaPP metric, Normalized Aggre-
gation along Pathway (NAP), we first derive the group-specific distance vector
dg(x) = hg(x)−hg(x̂), where hg(x) = [hg,1(x), . . . , hg,L(x)] concatenates activa-
tions across all layers l. Given a training set X , let Dg be a matrix whose rows
correspond to dg(xi) for xi ∈ X , and let D̄g denote the column-wise centered
version of Dg. The NAP metric for group g is then:

ϵNAP(g)(x) =
∥∥∥(dg(x)− µX )

⊤
VgΣ

−1
g

∥∥∥
2
. (2)

Here, µXg ∈ Rnl·L is the column-wise mean of Dg, Σg ∈ Rk×k is a diagonal
matrix containing the singular values of D̄g, and Vg ∈ R(nl·L)×k contains the
right singular vectors from the singular value decomposition (SVD) of D̄g, with
k denoting the rank of D̄g.

This design allows the model to isolate sensor group contributions, where
anomalies in specific sensor groups are preserved without being diluted by nom-
inal signals from other groups and this results in enhanced interpretability as
HIs directly map to physical sensor groups, aiding root-cause analysis.

Building on González et al. [11], where latent-space RaPP metrics outperform
encoder-derived counterparts for HI construction, our method integrates both
approaches. We compute latent-space z metrics (ϵNAPLS , ϵSAPLS), with ϵSAPLS

derived from all the data and not by individual groups.

3.4 Final set of HIs

The full set of HIs produced by I-GLIDE are then aggregated with our UQ as
the set HIgroups = {ϵSAP(g) , ϵNAP(g) , ϵSAPLS , ϵNAPLS , σa(g) , σe(g)}∀g ∈ G where
σa(g) , σe(g) are respectively the aleatoric and espitemic uncertainties computed
for each group g. We also compare with the monilithic architecture where the
inputs x are not divided into subgroups, and thus our set of HIs is defined as
HImono = {ϵSAP, ϵNAP, ϵSAPLS , ϵNAPLS , σa, σe}.

To evaluate their predictive capabilities, we train a meta regressor F(.) on
the task of RUL estimation. We also compare with the previous set of RaPP
indicators from Gonzàlez by define HIGonzález = {ϵNAPLS , ϵSAPLS} [11].

4 Experiments

We aim to find out whether augmenting latent space HIs (RaPP metrics) with
UQ, contributes to better understanding of degradation mechanisms in complex
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Table 2. The four C-MAPSS dataset subsets and their description, with associated
number of operating conditions and amount of degradation fault modes origins.

FD001 FD002 FD003 FD004
Train trajectories 100 260 100 248
Test trajectories 100 259 100 249

Conditions 1 6 1 6
Fault modes 1 1 2 2

system in the perspective of RUL estimation. In a second step, we’d like to
test whether introducing an architecture able to disentangle sub-systems degra-
dation mechanisms can further improve this RUL estimation, through better
understanding of the system from data, and minimal domain-knowledge. Our
code is available at: https://github.com/LucasStill/I-GLIDE for reproduction
purposes.

4.1 Datasets

We evaluate our framework on two datasets. The C-MAPSS dataset [29] a bench-
mark for degradation modeling, contains simulated run-to-failure trajectories
of jet engines generated using NASA’s C-MAPSS simulator. Each multivariate
time series corresponds to a unique engine operating under varying conditions,
divided into four subsets (FD001–FD004; see Table 2). During training, we focus
on samples with RUL ≤ 80 timesteps (Rearly = 80) to prioritize early degrada-
tion signals while retaining healthy-state representations. For testing, we follow
the established protocol by prior works with Rearly = 125 to enable direct com-
parison. The test set contains truncated trajectories that stop before the point
of failure, and the task is to predict this last available value on the trajectory.
We present the partitioning of the different groups in table 3.

To further validate our approach and compare the effects of subsystem group
separation, we test on the MILL NASA dataset, which records 167 unique tool
wear progression during milling experiments under varied conditions (depth of
cut, feed rate, material). Sensor signals (acoustic, vibration, current) track wear,
with failure defined at wear=0.70 (initial wear=0). We classify samples as healthy
(wear ≤ 0.20) during training and evaluate degradation over three test phases:
complete trajectories, moderate degradation (wear > 0.20), and severe degrada-
tion (wear > 0.50). Each sensor contains a total of 9000 entries, but some have
missing data which we fill through interpolation with neighboring values.

For both datasets, we will apply our method to create our sets of HIs and
measure their predictive capabilities over RUL prediction, using RMSE metric
which is commonly used on these datasets [7].

4.2 Experimental Methodology

To validate our framework, we adopt a prognostics-centric evaluation protocol
that directly benchmarks HIs by their ability to predict RUL—the ultimate
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Table 3. Grouping of sensors in the CMAPS dataset.

Group Sensor ID Description

Fan

s_1 Total temperature at fan inlet (°R)
s_5 Pressure at fan inlet (psia)
s_8 Physical fan speed (rpm)
s_13 Corrected fan speed (rpm)
s_18 Demanded fan speed (rpm)
s_19 Demanded corrected fan speed (rpm)

LPC s_2 Total temperature at LPC outlet (°R)

HPC
s_3 Total temperature at HPC outlet (°R)
s_7 Total pressure at HPC outlet (psia)
s_11 Static pressure at HPC outlet (psia)

Core s_9 Physical core speed (rpm)
s_14 Corrected core speed (rpm)

Pressure Turbine
s_4 Total temperature at LPT outlet (°R)
s_20 HPT coolant bleed (lbm/s)
s_21 LPT coolant bleed (lbm/s)

Other

s_6 Total pressure in bypass-duct (psia)
s_10 Engine pressure ratio (P50/P2) (-)
s_12 Ratio of fuel flow to Ps30 (pps/psia)
s_15 Bypass Ratio (-)
s_16 Burner fuel-air ratio (-)
s_17 Bleed Enthalpy (-)

objective of HI construction. We first compare the RaPP-based HIs proposed
by González et al. (HIGonzález) [11] against a enhanced variants: HImono, which
integrates encoder-level RaPP metrics [18], with UQ. We use a single timestep
for each created HI. Critically, we bypass classical HI metrics like monotonicity
or trendability, which often fail to correlate with actionable prognostic value,
and instead train a random forest (RF) regressor F to map HIs to RUL. This
choice reflects a key design principle: HI quality should be first judged by its
downstream utility in prognostics.

We then introduce our I-GLIDE architecture, instantiated as I-GLIDEAE
and I-GLIDEVAE, which generates subsystem-specific HIs (HIgroups) by isolat-
ing sensor-group degradation patterns. These are benchmarked against mono-
lithic AE/VAE counterparts under identical RF training protocols, ensuring fair
comparison. By using a simple, non-temporal model like RF, we deliberately
decouple HI quality from algorithmic sophistication, isolating how architectural
choices (monolithic vs. subsystem-specific) impact prognostics performance.
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4.3 Results

When comparing the RUL estimation capabilities of HIGonzález and HImono as
shown in table 4, we find that HImono consistently outperforms HIGonzález across
all C-MAPSS subsets (FD001-FD004). For example, HImono derived from AEs
reduces RMSE by 22.95% on average compared to HIGonzález, with particularly
notable gain on FD002 (15.71 vs 22.91) and FD003 (8.07 vs 12.03). Similar trends
hold for VAEs, where HImono achieves a 28.44% average RMSE improvement,
underscoring the value of UQ in stabilizing HI quality. The same can be ob-
served for the MILL dataset in table 5. This ablation study demonstrates that a
broader coverage of latent HIs with UQ, collectively strenghtens RUL predictive
capabilities, even before subsytem-specific modeling.

Next, we deploy I-GLIDE, which explicitly disentangles subsytem degra-
dation (e.g., HPC, fan, turbine in C-MAPSS) by grouping sensor signals into
functionally coherent components (exacts group choices are presented in the ap-
pendix). Compared to monolithic architectures, I-GLIDE achieves superior ro-
bustness, as evidenced by its 39.96% reduction of standard deviation in RMSE
across C-MAPSS subsets from AE-based HIs (6). For VAEs, gains are even more
pronounced: I-GLIDEVAE reduces RMSE by 39.03% and standard deviation by
56.07%, resolving the instability seen in monolithic VAEs (e.g., FD002/FD003
variance). This subsystem isolation proves critical on FD004-the most complex
C-MAPSS subset-where I-GLIDE’s average results set a new state-of-the-art
performance with a RMSE of 14.19 despite using only a RF regressor for RUL
prediction.

On the MILL dataset, I-GLIDE’s subsytem-specific HIs improve RUL predic-
tion across all degradation phases (healthy, moderate, severe), with I-GLIDEAE-
driven HIs achieving the lowest RMSE in every scenario. VAE gains are subtler,
likely due to MILL’s lower inherent complexity, or high dimensional space which
limits the benefits of variational inference.

Table 4. Comparison of sets of HIs extracted from different architectures to predict
the RUL RMSE on C-MAPSS test dataset using a Random Forest for F . Best models
shown.

HI Extractor HI Set for F(.) FD001 FD002 FD003 FD004 Avg.

AE HIGonzález [11] 11.43 22.91 12.03 16.78 15.79
HImono 10.53 15.71 8.07 14.35 12.17

VAE HIGonzález [11] 27.56 28.62 24.36 22.33 25.72
HImono 18.77 19.44 15.59 19.81 18.40

I-GLIDEAE HIgroups 9.47 16.18 8.29 12.32 11.57
I-GLIDEVAE HIgroups 12.33 16.76 8.5 11.4 12.25
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Table 5. RUL MILL Dataset Benchmark on three wear levels. I-GLIDE HIs consis-
tently outperform the monolithic counterpart in RMSE for RUL prediction [2].

Model Name, HI set for RF Wear 0.0-0.70 Wear 0.20-0.70 Wear 0.50-0.70
AE, HIGonzález [11] 23.78 24.34 22.33

AE, HImono 16.14 16.47 16.25
I-GLIDEAE, HIgroups 13.64 14.37 16.17
VAE, HIGonzález [11] 27.84 27.92 27.14

VAE, HImono 22.32 22.46 23.47
I-GLIDEVAE, HIgroups 21.76 22.29 23.13

Table 6. Average model performances across 10 runs over C-MAPSS subsets using
RMSE (mean ± standard deviation). Bold: best results per subset; underline: out-
performs methods without HIs. Last column provides average improvement over the
previous row.

Model, HI Set FD001 FD002 FD003 FD004 Avg. Improvement

AE, HIGonzález [11] 19.00
±4.78

25.69
±4.19

18.38
±6.18

19.46
±2.46

20.63
±4.40 –

AE, HImono
13.14
±2.50

20.35
±3.46

13.87
±5.07

17.73
±3.56

16.27
±3.65

+21.13%
+17.15%

I-GLIDEAE, HIgroups
12.11
±2.72

22.01
±2.88

10.23
±1.85

14.92
±1.31

14.82
±2.19

+8.94%
+39.96%

VAE, HIGonzález [11] 34.13
±3.71

31.05
±1.89

27.25
±2.58

25.23
±2.03

29.42
±2.55 –

VAE, HImono
27.19
±5.97

22.81
±2.86

24.64
±5.26

22.89
±1.82

24.38
±3.98

+17.10%
-55.83%

I-GLIDEVAE, HIgroups
15.32
±2.08

18.83
±1.51

11.12
±2.29

14.19
±1.11

14.87
±1.75

+39.03%
+56.07%

5 Discussion

Remarkably, when looking at the best produced models, even with a RF-a model
far simpler than deep learning baselines-our HIs match or exceed prior SOTA
on three out of four C-MAPSS benchmarks as shown in table 7. This paradox
highlights that HI quality, not model complexity, drives prognostics success.
When looking at the expected accuracies of the different models, we see that
I-GLIDE has lower standard deviations, being more robust to prediction, which
explains why in two cases the best model was a monolithic AE: despite showing
great performance on a single set, its high standard deviation shown in table 6
indicates it would not be robust on a broader test set, or in real-life conditions.
This is why I-GLIDE offers solid perspectives towards more robust predictions.

Monolithic AEs struggle to disentangle subsystem-specific degradation, which
we illustrate with a HI plot of the trajectories in Figure 5. For Engine 1 (FD001),
where HPC degradation is the source, HImono shows weak latent-space (z) sen-
sitivity to subsystem dynamics. This occurs because deeper layers in mono-
lithic AEs compress sensor signals into a global representation, obscuring non-
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Table 7. Comparison of I-GLIDE method for HI extraction benchmarked to predict
a RUL, compared with best known approaches. In bold are the best results for each
subset. Most previous methods were predicting a RUL from transformed sensor data
without producing HIs, contrarily to our method which does provide HIs.

Model FD001 FD002 FD003 FD004
MLP [36] 37.56 80.03 37.39 77.37
CNN [36] 18.45 30.29 19.82 29.16
CNN-LSTM [26] 11.17 - 9.99 -
MS-DCNN [21] 11.44 19.35 11.67 22.22
VAE + RNN [5] 11.44 24.12 14.88 26.54
MLE(4X)+CCF [27] 11.57 18.84 11.83 20.78
RVE [5] 13.42 14.92 12.51 16.37
Probabilistic RUL CNN [7] 12.42 13.72 12.16 15.95
I-GLIDEAE + RF (ours) 9.47 16.18 8.29 12.32
I-GLIDEVAE + RF (ours) 12.33 16.76 8.5 11.4

stationary interactions (e.g., HPC wear indirectly altering turbine behavior). In
contrast, Figure 5 reveals how I-GLIDE isolates these dynamics: the HPC en-
coder HI exhibits a clear upward trend, while the turbine HI shifts abruptly as
degradation propagates—a causal linkage masked in monolithic architectures.
Notably, the shared latent z in I-GLIDE still captures the composite degrada-
tion trend, and subsystem-specific decoders also localize fault origins (e.g., rising
epistemic uncertainty in HPC vs. stable turbine estimates). This explains why
HImono underperforms—it conflates cross-subsystem effects into a single noisy
signal, while our I-GLIDE overcomes these restrains. In future work, we would
like to formalize methods to interpret such causal relationships between HIs,
identify noise patterns in the degradation signals, and apply it to maintenance
tasks.

Traditional HI metrics (monotonicity, trendability, prognosability) often pro-
duce misleading scores (e.g., near-perfect prognosability) that poorly correlate
with actual RUL prediction. Worse, they ignore subsystem-specific degradation,
obscuring actionable insights. Our framework addresses this by directly link-
ing HI quality to RUL prediction accuracy—a metric aligned with real-world
decision-making. By disentangling subsystem trends (e.g., turbine wear vs. fan
imbalance), I-GLIDE enables targeted fault diagnosis and maintenance planning.

While our framework advances subsystem-aware HIs, several constraints merit
consideration. First, it is worth noting that both the C-MAPSS and MILL
datasets model exponential degradation patterns, which oversimplify real-world
scenarios where industrial systems often exhibit linear or piecewise degradation
trends. Real-world applications also introduce complex noise profiles (e.g., cyclic
sensor artifacts) and heterogeneous failure modes that our method may not op-
timally capture without tailored adaptations.

Readers should be aware that our architecture assumes strictly monotonous
degradation, limiting its ability to model recovery phases—a critical shortcom-
ing for systems where transient improvements occur, such as medical devices
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(a) Latent Encoder HI (b) Latent z HIs (c) Epistemic UQ HI

Fig. 2. AE HI trajectories for Engine 1 for the monolithic architecture. We can observe
that the HIs model a degradation, but cannot distinguish sub-system components. We
only show the SAP metric for the encoder HIs because NAP shows extreme values.

(a) Latent Encoder HIs (b) Latent z HIs (c) Epistemic UQ HI

Fig. 3. I-GLIDEAE HI trajectories for Engine 1, comparing degradation effects on
HPC and Turbine. Latent encoder HIs (a) show rising HPC degradation and reduced
Turbine HIs due to cross-component effects. System-wide latent z HIs trends are in (b).
Epistemic uncertainty (c) rises sharply for HPC as degradation progresses, remaining
stable for the Turbine until late-cycle HPC interference. UQ confirms causal cross-
component effects without confusing intrinsic health states.

supporting patient recovery or aircraft exiting high-stress environments. Fur-
thermore, our subsystem groupings rely on domain heuristics; while this aligns
with prior work, poorly defined sensor groupings could propagate biases into the
latent representations, undermining HI interpretability.

6 Conclusion and Future Work

This work establishes the first prognostics benchmark for evaluating Health In-
dicators (HIs) generated via the RaPP methods, demonstrating that integrat-
ing uncertainty quantification significantly enhances their predictive capabili-
ties. Building on this foundation, we introduce I-GLIDE, a novel framework
that learns subsystem-specific latent representations through dedicated encoder-
decoder pairs. By isolating degradation mechanisms (e.g., HPC degradation vs.
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turbine wear) while maintaining global system dynamics via a shared latent
space, I-GLIDE captures nuanced failure modes without compromising system-
level coherence. The resulting high-quality HIs achieve state-of-the-art perfor-
mance on the C-MAPSS dataset, surpassing existing deep learning benchmarks
using only a simple Random Forest regressor.

Our subsystem-specific HIs advance prognostics but invite refinement. Tem-
poral improvements—like extending observation windows—could better resolve
slow degradation signatures and transient noise, aligning HI trajectories with
real-world failure timelines. Coupling uncertainty-specific t-SNE visualizations
with expert annotations could map latent clusters to physical degradation stages,
bridging data-driven insights with domain knowledge.

A promising direction involves modeling causal subsystem interactions via
architectures like graph neural networks, trained on fused HIs to disentangle
degradation propagation (e.g., turbine-to-compressor wear). This would scale
prognostics to systems with complex interdependencies.

Critically, our results show that high-quality HIs paired with simple models
(e.g., RF) outperform deep learning on raw data—a "data is gold" paradigm. Fu-
ture efforts should prioritize refining physics-aware HI representations—grounded
in subsystem dynamics and enriched with UQ to unlock generalizable, trustwor-
thy RUL prediction across grounded industrial domains.
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