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Abstract. Missing data represents one of the most ubiquitous data
quality issues, and also one of the most impactful on machine learning
(ML) pipelines. Indeed, not only most commonly applied ML methods
cannot directly employ incomplete data, but also the techniques em-
ployed to manage this issue can impact on the performance and evalu-
ation of ML models. Among such techniques to manage missing data,
imputation, that is filling in the missing values using information from
the observed data, remains among the most popular and effective in prac-
tice. Yet, from a theoretical point of view, it is still not clear under which
conditions it is possible to learn effectively after imputation. In this arti-
cle we address this gap by studying learnability under imputation in the
framework of statistical learning theory. After giving a general definition
of learnability under imputation, we show three main contributions: 1)
we introduce a novel stability condition, called noise risk stability, which
we prove to be both sufficient and, under weak assumptions, necessary
for learnability under imputation; 2) we show that a large class of ML
models (including linear and kernel methods) satisfies noise risk stability;
3) we characterize the learning-theoretic properties of two common im-
putation methods (constant and regression imputation). Our results set
the stage for a rigorous study of imputation and missing data manage-
ment in the framework of statistical learning theory, by also describing
relevant open questions.

Keywords: Imputation · Missing Data · Learnability · Statistical Learn-
ing Theory

1 Introduction

Missing data is one of the most commonly occurring data quality issues in real-
world datasets. In fact, in many practical settings, facing missing data is the
norm more than the exception, and failure to account for this issue can have
profound consequences on the development and evaluation of machine learning
(ML) models [1, 34], especially since most commonly used ML algorithms do not
have a way to directly use missing data in the training process.

Consequently, a variety of approaches have been developed to manage missing
data and enable the development of downstream ML tasks [21]. Among them,
imputation (i.e., filling in the missing data with some replacement values) is
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one of the most popular approaches, with a variety of techniques ranging from
constant imputation (encompassing commonly used approaches such as mean
imputation) to regression imputation [43, 44], to multiple imputation [7, 38].

Nonetheless, the conditions under which missing data imputation is expected
to work—i.e., it does not negatively impact the learnability of downstream ML
tasks—are yet unclear. As such, the exploration of imputation methods is still
mostly guided by empirical experimentation and ad-hoc strategies. Indeed, de-
spite extensive empirical validation and comparisons [18, 24, 29, 35], often pro-
viding conflicting results, there is no consensus on when and how imputation
should be applied [31], and when learning is still possible despite the potential
noise introduced by imputation [27]. Most relevantly, from a theoretical point of
view, there is still a lack of research studying the impact of missing data impu-
tation on learnability in the statistical learning theory framework, especially in
regard to the development of practical finite-sample guarantees that ensure the
feasibility of learning after imputation.

Research on the interaction between missing data, imputation, and learn-
ability has been carried out mainly within the algorithmic learning theoretic
framework of learning under partial observability [14, 13, 22, 33, 39]. While these
approaches can provide finite-sample guarantees, most work in the area has fo-
cused on model classes (e.g., propositional formulas) and settings (e.g., concept
learning) which, while interesting from the point of view of exploring the com-
putational limits to learnability with missing data, are rather distant from the
current practice of ML. In contrast, research in the statistical learning frame-
work has been primarily concerned with asymptotic consistency or optimality
guarantees [8, 25, 28, 27, 40], especially so for specific classes of ML models such
as linear predictors, which despite being closer to the methodology most com-
monly adopted in modern ML do not provide finite-sample guarantees. More
recently, Ayme et al. [4–6, 37] have investigated finite-sample (as well as opti-
mality) guarantees for learning after imputation: however, this line of research
has focused only on linear models under specific imputation strategies (constant
and pattern-by-pattern imputation), and does not provide general conditions for
learnability in this setting that can be applied for general learning models.

In this paper, we start to address this gap by studying conditions under which
learning under imputation is feasible. In particular, we provide three main contri-
butions. First, we introduce a condition for learnability under imputation, called
noise stability, which we show to be sufficient and, under weak assumptions, also
necessary. Intuitively, this condition guarantees that a learning algorithm is sta-
ble under noisy variations of the real data introduced by an imputation mech-
anism. Second, we study two common imputation strategies (namely, constant
and regression imputation), providing bounds on the noise they may introduce
in learning problems. Finally, we show that a large class of ML models are noise
stable, and provide finite-sample guarantees for learnability with missing data
using these model classes.
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2 Background and Mathematical Notation

Let X be the instance space: we assume that X is a (subset of a) d-dimensional
real vector space. Given any vector x ∈ X, x(i) denotes the i-th dimension of x.
Let Y be the target space. Y can be either discrete (finite or countable), in which
case we consider a classification task, or also continuous (that is, uncountable),
in which case we consider a regression task. Let D be a probability measure over
X×Y , called data-generating process. D represents the process that generates the
complete, possibly unobserved, data samples. We also assume the existence of d
probability measuresM1, . . . ,Md, where, for each i,Mi is a probability measure
over X×Y ×X̃(i), where X̃(i) = X(i)∪{⊥}. In particular, the symbol ⊥ denotes
a missing value. Let M = ΠiMi and X̃ = ΠiX̃

(i). We will assume that data is
generated according to the following process: first, a sample (x, y) is drawn from
D; subsequently, an incomplete sample (x′, y) ∈ X̃ × Y is drawn from the con-
ditional M(·|(x, y)). The conditional distributions Mi(⊥|x(1), . . . , x(i), . . . , x(d))
are of particular interest since, based on the dependency structure of the con-
ditionals, one can distinguish different types of missingness mechanisms: as we
will not discuss further this categorization, we refer the interested reader to [30].

We will represent the action of imputation methods by the abstract defi-
nition of an imputation mechanism. A imputation mechanism is a randomized
algorithm Impute : (X̃ × Y )m × (X̃ × Y ) → X that takes as input a training
set S, a (partially observed) instance (x, y) and gives as output an imputed,
possibly corrupted, instance x′. Given a missing data mechanism M and an
imputation mechanism Impute, we define a randomized algorithm Corrupt :
(X×Y )m×(X×Y ) → X: Corrupt takes as input a dataset S, an instance (x, y),
applies the missingness mechanism M to both S and (x, y), and then returns the
result of Impute(S, (x, y)). We will use the notation CorruptS(x, y) to denote the
action of Corrupt on an instance (x, y) for a given dataset S. We call the proba-
bility measure defined by Corrupt a corruption mechanism. We say that Corrupt
satisfies the small noise condition, with noise function ϵCorrupt : N×R→ R, if,
for each m > 0, δ > 0, with probability larger than 1− δ over the sampling of a
dataset S ∼ Dm and T = {CorruptS(x, y)|(x, y) ∈ A}, it holds that:

E[∥CorruptS(x, y)− x∥X ] ≤ ϵCorrupt(m, δ), (1)

where ϵCorrupt is non-increasing in its arguments and ∥ · ∥X is a norm on X.
Let H be a set of models, that are, functions h : X → Z, where Z is a set1. A

learning algorithm is a function A :
⋃

m∈N+(X × Y )m → H. A loss function is a
map l : X×Y ×H → R. A loss function l is L-Lipschitz ifH has a norm ∥·∥H and
∀x ∈ X, y ∈ Y, h1, h2 ∈ H, |l(x, y, h1)− l(x, y, h2)| ≤ L∥h1 − h2∥. l is µ-strongly
convex if ∀h1, h2 ∈ H, α ∈ [0, 1], αh1 + (1− α)h2 exists and is in H and it holds
that l(x, y, αh1+(1−α)h2) ≤ αl(x, y, h1)+(1−α)l(x, y, h2)−µ

2α(1−α)∥h1−h2∥
2.

l is convex if the previous requirement holds only for µ = 0. If l is differentiable,

1 In general, Z can be different from Y : for example, in the case of binary classification
(where Y = {−1, 1}), Z is often set equal to R.
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then l is M -smooth if ∀x ∈ X, y ∈ Y, h1, h2 ∈ H, ∥∇l(x, y, h1)−∇l(x, y, h2)∥∗ ≤
M∥h1 − h2∥, where ∥ · ∥∗ is the dual norm.

Given a data-generating distribution D and a model h ∈ H, we define
the true risk of h as R(h) = E(x,y)∼D[l(x, y, h)]. Given a finite sample S =

{(x1, y1), . . . , (xm, ym)} ∈ (X×Y )m, we define the empirical risk of h as R̂S(h) =
1
m

∑m
i=1 l(xi, yi, h). We define empirical risk minimization (ERM) to be any

learning algorithm A s.t. A(S) ∈ infh∈H R̂S(h). We say that a model class H is
(agnostic) learnable2 if there exists a learning algorithm A :

⋃
m∈N∗(X×Y )m →

H and a function ϵH,A
L : N ×R → R s.t., for each data-generating mechanism

D, δ > 0 and sample size m, with probability larger than 1−δ over the sampling
of S ∼ Dm it holds that:

|R(A(S))− R̂S(A(S))| ≤ ϵH,A
L (m, δ), (2)

with limm→∞ ϵH,A
L (m, δ) = 0. We say that D is realizable (w.r.t. H) if ∃h ∈ H

s.t. R(h) = 0. Finally, H satisfies uniform convergence if there exists a function
ϵHUC : N×R→ R s.t., for all data-generating mechanisms D, δ > 0 and sample
sizes m > 0, with probability larger than 1− δ over the sampling of S ∼ Dm, it
holds that suph∈H |R(h)− R̂S(h)| ≤ ϵHUC(m, δ), with limm→∞ ϵHUC(m, δ) = 0.

3 Learnability with Missing Data

As a first step, we extend the definition of learnability to the case of learning
with missing data using imputation.

Definition 1. Let H be a class of models. Then, H is learnable under impu-
tation if there exists a learning algorithm A :

⋃
m∈N(X × Y )m → H and two

functions ϵH,A
1 : N × R → R and ϵH,A

2 : N × R2 → R s.t. for any δ, ϵ > 0,
m ∈ N

+, data-generating mechanism D, corruption mechanism Corrupt with
ϵCorrupt(m, δ) ≤ ϵ, it holds with probability larger than 1− δ (over the sampling
of S ∼ Dm and T = {CorruptS(x, y)|(x, y) ∈ S}) that:

R(A(T )) ≤ R̂T (A(T )) + ϵH,A
1 (m, δ) + ϵH,A

2 (m, ϵ, δ), (3)

with ϵH,A
1 , ϵH,A

2 decreasing in all of their arguments, and limm→∞ ϵH,A
1 (m, δ) = 0

and limm→∞,ϵ→0 ϵ
H,A
2 (m, ϵ, δ) = 0.

Definition 1 is a natural generalization of the notion of agnostic learnability
in the classical PAC learning framework. Indeed, for a model class to be learn-
able under imputation means that the generalization gap can be bounded as

2 The definition of agnostic learnability we provide is sometimes called generaliz-
ability in the literature, whereas (strict) learnability (also called, universal consis-
tency) is defined by replacing Eq. (2) with |R(h∗) − R(h(S))| ≤ ϵH,A

L (m, δ), with
h∗ ∈ arg infh∈H R(h). Since, under weak assumptions (in particular, under uniform
convergence), generalizability is both necessary and sufficient for strict learnability,
in this paper we focus on the former notion, and term it learnability.
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a quantity that vanishes with the noise introduced by the considered imputa-
tion mechanism (and increasing data). Thus, if the imputation is approximately
faithful to the real, unobserved data, the empirical risk on the imputed data
should be (with high probability) close to the true risk. Specifically, note that
Definition 1 requires that if we are able to make the noise due to imputation
ϵ arbitrarily small, we recover exactly the definition of agnostic learnability. In
contrast, when the noise due to imputation is too large, we cannot expect a
model to work as well, as the data used for training will essentially be out-of-
distribution compared to the data-generating mechanism D w.r.t. which the true
risk is computed: nonetheless, the penalty in performance can be upper bounded
by a quantity that only depends on the noise itself.

As an additional comment, we note that Definition 1 also implies that a
good learning algorithm could be obtained by minimizing the right side of Eq.
(3). While in standard supervised learning such an algorithm exists (e.g., in both
binary classification and regression, ERM), it is not similarly easy to identify such
an optimal algorithm in the setting of learning under imputation, as the learning
algorithm A affects not only the empirical risk R̂T but also the term ϵH,A

2 : as a
consequence, it is not clear whether ERM minimizes the bound in Eq. 3, even
under uniform convergence (in which case, the term ϵH2 is independent of A).
This situation is not unexpected, as also in the setting of general learning there
exist natural learning tasks for which ERM is not always an optimal strategy
[41]. For this reason, in the following, we allow arbitrary learning algorithms A.

We now introduce the central definition in our mathematical development,
which we will use to provide a characterization of learnability under imputation.

Definition 2. Let H be a set of models, l a loss function and A a learning
algorithm for H. We say that A is noise risk stable (NRS) if there exists a
function ϵANRS : N × R2 → R s.t., for every δ, ϵ > 0,m > 0 and corruption
mechanism Corrupt with ϵCorrupt(m, δ) ≤ ϵ, with probability larger than 1 − δ
over the sampling of S ∈ (X × Y )m and T = {CorruptS(x, y) : (x, y) ∈ S}, it
holds that:

R̂S(h)− R̂T (h) ≤ ϵANRS(m, ϵ, δ) (4)

where h = A(T ), and lim supm→∞,ϵ→0 ϵ
A
NRS(m, ϵ, δ) ≤ 0.

Intuitively, a learning algorithm is NRS if the losses of the models trained
on the complete (unobserved) data and the data corrupted by the imputation
mechanism are close. Thus, when the imputation does not introduce an excessive
amount of noise, a NRS algorithm will not amplify this noise by more than
a negligible quantity (that goes to 0 as the noise itself goes to 0). Then, we
prove our main result: model classes for which there exists a NRS algorithm are
learnable even under corruptions introduced by imputation.

Theorem 1. Let H be a model class and l be a loss function bounded in [0, b].
Assume that H is learnable, and define AH = {A :

⋃
m∈N+(X × Y )m →

H|H is learnable using A}. For each A ∈ AH, let ϵH,A
L be the generalization
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gap as defined in Eq. (3). Then, a sufficient condition for learnability under im-
putation is that there exists A ∈ AH that is NRS. Furthermore, when such an A
exists, then, with probability larger than 1− δ over the sampling of S ∼ Dm and
T = {CorruptS(x, y)|(x, y) ∈ S}, it holds that R(A(T )) can be upper bounded

by R̂T (A(T )) + ϵH,A
L (m, δ3 ) + ϵH,A

NRS(m, ϵCorrupt(m,
δ
3 ),

δ
3 ).

Under the assumption that H satisfies uniform convergence, the existence of
a NRS A ∈ AH is also necessary for learnability under imputation.

Theorem 1 provides a tight characterization of the notion of learnability un-
der imputation, as it shows that, under weak assumptions, it is equivalent to
the notion of noise risk stability. Thus, if the gap in empirical risk (R̂S(A(T ))−
R̂T (A(T ))) introduced by imputation can be controlled, then also the generaliza-
tion gap R(A(T ))−R̂T (A(T )) can be controlled: in particular, if we can make the
noise ϵCorrupt arbitrarily small (as a function of m), then we can make the gen-
eralization gap also arbitrarily small. Note that, under uniform convergence and
with probability larger than 1− δ, this also implies that R(A(T ))− infh∈HR(h)
can be made arbitrarily small3: this guarantees that, in particular and despite
the presence of noise introduced by imputation, it is possible to get a model
that (with high probability) will be arbitrarily close to the optimal Bayes pre-
dictor h∗ = infh∈HR(h). Note that this result is considerably stronger than
agnostic learnability, as in the case of learning under imputation the learning
algorithm A is not able to observe the real data sampled from D but only an
out-of-distribution sample drawn from Corrupt. Nonetheless, we note that The-
orem 1 only provides an upper bound on the generalization gap. In general, a
lower bound could easily be obtained by using a lower bound for learnability,
however it is not clear whether this bound is tight: that is, there may exist learn-
ing problems for which, despite the presence of imputation, we can recover the
same generalization gap as if the data were completely observed. We leave the
search for lower bounds (as well as to understand whether there exist matching
lower and upper bounds) as future work.

Before proceeding further, we make some further comments on Theorem 1
and highlight some potential related open questions. Firstly, a known result from
statistical learning theory implies that a class of models H is (agnostic) learnable
if and only if there exists a uniform replace-one (RO) stable4 asymptotic ERM5

algorithm A that learns it [41]. Thus, in a sense, stability is already a necessary
condition for (conventional) learnability. However, even though both definitions

3 Indeed, R(A(T ))− infh∈H R(h) = R(A(T ))− R̂T (A(T ))+ R̂T (A(T ))− infh∈H R(h).
If uniform convergence holds, then, without loss of generality, A can be set to be
an ERM [41]. Hence, letting h∗ = infh∈H R(h), it holds that R(A(T )) − R(h∗) ≤
R(A(T ))−R̂T (A(T ))+R̂T (h

∗)−R(h∗) ≤ ϵANRS(m, ϵCorrupt(m, δ
4
), δ

4
)+ϵH,A

L (m, δ
4
)+

ϵHUC(m, δ
4
) → 0, as ϵCorrupt → 0 and m → ∞.

4 A is uniform RO stable if there exists ϵstable : R → R s.t. for all pos-
sible S = {(x1, y1), . . . , (xm, ym) ∈ (X × Y )m and (x, y) ∈ (X × Y ) it
holds that 1

m

∑m
i=1 |l(x, y,A(S)) − l(x, y,A(Si)| ≤ ϵstable(m), where Si =

{(x1, y1), . . . , (xi−1, yi−1), (x, y), (xi+1, yi+1), . . . , (xm, ym).
5 A is an asymptotic ERM if limm→∞ES∼Dm [|R̂S(A(S))− infh∈H R̂S(h)|] = 0.
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of stability require that the risk of a learning algorithm does not change too
much under small variations of the data, the constraints they impose on a learn-
ing algorithm are rather different from an intuitive point of view. Indeed, while
uniform RO stability requires the loss being stable under arbitrary changes to a
single instance, noise risk stability requires stability under constrained changes to
the entire data-generating distribution. We leave the problem of further charac-
terizing the relationships among these two notions of stability (and, in particular,
the identification of conditions under which they are equivalent) as future work.

Second, while Theorem 1 shows that noise risk stability is necessary for learn-
ability under imputation, the proof of this fact relies on uniform convergence.
Such an assumption is reasonable for many commonly occurring learning tasks:
e.g., for both binary classification [12, 45] and bounded regression [3], uniform
convergence is equivalent to learnability, and, more generally, uniform conver-
gence is equivalent to learnability whenever the loss function l is bounded, has
linear dependence on h ∈ H and H itself is bounded [42]. However, uniform con-
vergence may also fail to hold in many natural scenarios in which learnability is
nevertheless possible [19, 41]. In these scenarios, noise risk stability is still suffi-
cient for learnability under imputation, but the proof of necessity in Theorem 1
fails. Therefore, a more general proof technique should be adopted to understand
whether noise risk stability characterizes learnability under imputation also in
these more general settings: we leave this open question as future work.

Finally, while in this work we focus solely on learnability under imputation,
the small noise condition in Eq. (1) only requires that the average distance
between instances sampled from D and instances sampled from a different dis-
tribution L can be bounded from above by a quantity that is monotonically
decreasing (in m). While in our setting L is the distribution derived by the cor-
ruption mechanism Corrupt, in principle one could set L arbitrarily as long as it
satisfies the above-mentioned condition. In this sense, learnability under imputa-
tion can be seen as a special case of domain adaptation [36] and credal learning
[15, 16]. That is, given a set of data sampled from L, we want to control the
out-of-distribution (OOD) risk on data sampled from D, under the constraint
that both D and L are contained in a set of probability distributions which, by
the small noise condition, is not too large: hence information about L can be
used as a proxy for information about D. We leave studying the relationships
between learning under imputation and OOD learnability as future work.

4 Linear-in-Parameter Models are Learnable under
Imputation

While in the previous section we established that noise risk stability is equivalent
to learnability under imputation, we have not yet proved the existence of NRS
algorithms. The following Theorem establishes this fact.

Theorem 2. Let l : X×Y ×H → R be a loss function that is L-Lipschitz in its
first argument, and assume that X is s.t. supx∈X ∥x∥X = B. Then, any learning
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algorithm A :
⋃∞

m=1(X × Y )m → H is NRS and:

ϵANRS(m, ϵCorrupt, δ) ≤ LϵCorrupt(m,
δ

2
) + 2BL

√
log(2/δ)

2m
. (5)

In particular, assume l(x, y, h) = g(⟨h, ϕ(x)⟩K), where g : R→ R is L-Lipschitz,
K is a Reproducing Kernel Hilbert Space, ⟨·, ·⟩K is an inner product on K and ∥·
∥K the derived norm, H ⊆ K is s.t. suph∈H ∥h∥K = H, ϕ : X → K, and ϕ(X) =
{ϕ(x) : x ∈ X} is s.t. supk∈ϕ(X) ∥k∥K = B. Then, any learning algorithm A is
NRS and:

ϵANRS(m, ϵCorrupt, δ) ≤ LHϵCorrupt(m,
δ

2
) + 2BHL

√
log(2/δ)

2m
. (6)

Assume that l(x, y, h) = g(⟨h, ϕ(x)⟩K) + r(∥h∥2K), with g as defined above, g
and r : R → R differentiable and Mg-smooth, Mr-smooth respectively. Assume
that l is b-bounded and µ(m)-strongly convex in H, with µ : N→ R being a func-
tion monotone increasing with m. Then, assuming infh∈H R̂S(h) ≤ R̂T (A(T ))
with S and T defined as above, there exists an algorithm A for which it holds,
with probability larger than 1− δ, that:

ϵANRS(m, ϵCorrupt, δ) ≤ b(1− 1

2(B2Mg + 2Mr)
)T +

ψ2

µ(m)
, (7)

where ψ = HLϵCorrupt(m,
δ
2 ) + 2BHL

√
log(2/δ)

2m + δBHL. The algorithm A

is gradient descent with step size γ ≤ min{ 1
(B2Mg+2Mr)

, 1
µ(m)T } and executed for

T iterations. The result above holds, in expectation, also for stochastic gradient
descent (with the same step size and the same number of iterations) as long as
for all h ∈ H the noisy gradient estimates g(h) satisfy E[g(h)] = ∇R̂T (h).

Theorem 2 shows that when the loss function is Lipschitz w.r.t. X, any al-
gorithm in AH (and, in particular if uniform convergence holds, ERM) is NRS.
Hence, not only ERM w.r.t. such a loss function provides an algorithm for learn-
ing under imputation but, under these assumptions, learnability under imputa-
tion is equivalent to learnability. In particular, as a consequence of Eq. (6), the
result holds for linear-in-parameter models (which include any kernel method),
as long as the models have bounded norm. Nevertheless, we note that this does
not imply that learning under imputation is as easy as conventional learning.
Indeed, the bound in Eqs. (5) and (6) encompass also the ϵCorrupt term. Thus,
fixed a particular class of imputation mechanisms and a class of models H, if
the term ϵCorrupt does not converge to 0 as m → ∞, it may be that ϵNRS

(and, thus, the generalization gap R(A(T ))− R̂T (A(T ))) does not converge to 0,
even though H is learnable under imputation using A. The reason behind this
seemingly paradoxical phenomenon is that the definition of learnability under
imputation guarantees the above-mentioned convergence only when we consider
a class of imputation mechanisms whose small noise constant also converges to
0 as the sample size grows. In this sense, learnability under imputation is in
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general strictly harder than learnability, as the former requires not only a good
learning algorithm, but also a good imputation mechanism.

Notably, however, under the stronger assumptions on the learning problem
required for Eq. (7), learnability under imputation is always possible, regardless
of the specific imputation mechanism adopted. Indeed, even for asymptotically
inconsistent imputation mechanisms for which limm→∞ ϵCorrupt(m, δ) > 0, Eq.
(7) guarantees that ϵNRS converges to 0 asm grows, since the learning algorithm
(gradient descent) ensures that the noise due to imputation is attenuated at a
rate 1

µ(m) . Nonetheless, also in this setting, not all imputation mechanisms are

equally good: indeed, the guarantee in Eq. (7) is particularly favorable when
it is possible to find a class of imputation mechanisms that is consistent (i.e.,
limm→∞ ϵCorrupt(m, δ) > 0) as, in this case, the generalization gap can decrease
exponentially fast in the size of the training set. Also, we note that, though
stronger than the assumptions of Eqs. (5) and (6), the assumptions required
for Eq. (7) to hold (with the exception of the requirement that infh∈H R̂S(h) ≤
R̂T (A(T )), which is intuitively reasonable6 but not testable, as S is not available)
are naturally satisfied by several natural learning problems, such as (regularized)
kernel logistic regression as well as kernel ridge regression. As we discuss in the
next section, this result provides a generalization of the main result in [5].

Before proceeding to the next section, we provide some further discussion
of the previous result, also highlighting some open questions. First, we note
that Theorem 2 requires that the loss function be Lipschitz w.r.t. X: this is
different from the usual definition of a Lipschitz loss function, which requires
Lipschitzness w.r.t. H. Nonetheless, whenever the loss function is symmetric
w.r.t. X and H (this happens, e.g., for linear-in-parameter models, as in Eq.
(6)) the two requirements are equivalent (though with different parameters).

Secondly, Theorem 2 only provides a necessary condition for noise risk stabil-
ity, and furthermore only provides an upper bound on ϵNRS . In particular, this
implies that even though under the assumptions of Theorem 2 learnability and
learnability under imputation are equivalent, there may be learning problems for
which this equivalence does not hold. We leave the analysis of noise risk stability
for other algorithms, as well as possibly the computation of lower bounds (as
well as tighter upper bounds) on ϵNRS , to future work.

Thirdly, while Eq. (7) provides better guarantees than both Eqs. (5) and (6),
it also enforces the selection of a learning algorithm: indeed, while Eqs. (5) and
(6) hold for any learning algorithm A, Eq. (7) is guaranteed to hold only for
(stochastic) gradient descent. While this is generally not a problem, as descent
methods are among the most commonly employed ML algorithms and can be
usually implemented efficiently, the previous observation implies that when it
is not possible to use gradient descent (e.g., for non-differentiable functions, or
also for black-box problems in which only a zero-th order oracle is available),
Eq. (7) cannot be applied. As our analysis strictly relies on the possibility to
use a gradient descent procedure, it is therefore not clear whether it would be

6 For example, the assumption holds when the original distribution D is realizable.
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possible to achieve similar convergence guarantees, that hold irrespective of the
imputation mechanism and its (in)consistency, also for other learning algorithms.

Finally, our proof of Eq. (7) relies on previous results on the convergence
gradient descent with biased oracles [2]. Other papers have investigated the
properties of descent-based algorithms with inexact gradient oracles [9, 10, 20,
23]. In particular, Chen et al. [17] studied convergence of (sub)gradient descent
under a noise model according to which a biased but asymptotically consistent
estimator of the gradient is available: at each iteration of the descent procedure,
the estimator is computed on the basis of multiple samples, and the estimator is
required to converge (in probability) to the actual gradient. This setting seems
to be of particular relevance to learnability under imputation: indeed, there exist
imputation mechanisms that allow the construction of multiple filled-in datasets,
so-called multiple imputation methods [38], and these alternative imputations
could, in turn, be used to obtain the multiple gradient approximations required
for the procedure described in [17]. As in this paper we do not discuss multiple
imputation methods, we leave the investigation of such a scenario to future work.

5 Characterizing the Small Noise Condition

In this section we provide a characterization of the small noise condition in Eq.
(1) for two commonly used imputation strategies, namely constant imputation
and regression imputation. These results provide computable certificates for the
small noise condition and thus, together with Theorem 2, also provide a way to
explicit finite-sample guarantees from the bounds in Theorem 1.

Theorem 3. Let FVv, with v : (X̃ × Y )m → X, be the imputation mechanism
defined coordinate-wise by:

FVv(S, (x, y))i =

{
xi xi ̸= ⊥
vi(S) otherwise

. (8)

Then, for every ℓp norm it holds, with probability 1, that: E[∥x−CorruptS(x, y)∥X ] ≤
Tr(Σ) + E[∥v(T ) − µ∥X ] ≤ supx1,x2∈X ∥x1 − x2∥X , where Σ is the covariance
matrix of DX =

∫
Y
D and µ = E[x]. Let avg be defined coordinate-wise by

avgi(S) = 1
|SC

i |
∑

(xj ,yj)∈S x
(i)
j 1x

(i)
j ̸=⊥. Then, if ∥ · ∥X is the ℓ2 norm, then it

holds with probability 1, that c · Tr(Σ) ≤ E[∥x− CorruptS(x, y)∥X ].
Additionally, if M is s.t. ∀i,Mi(⊥|(x, y)) = c and supx∈X ∥x∥X = D, then,

with probability larger than 1 − δ over the sampling of S ∼ Dm and T =
{CorruptS(x, y) : (x, y) ∈ S} it holds that c·Tr(Σ) ≤ E[∥x−CorruptS(x, y)∥X ] ≤
Tr(Σ) + 2D

∑d
i=1

√
log(1/δ)

2|SC
i | .

Theorem 4. Let Ri be a set of regression models r : X−i → R, where X−i =
Πi′ ̸=iX

(i′). Let Fill : ∪∞
m=1Π

d
i=1X̃

−i → ∪∞
m=1Π

d
i=1X̃

−i be an arbitrary function

satisfying: 1) |Fill(S)| = |S|; 2) Fill(S)(i)j = S
(i)
j iff S

(i)
j ̸= ⊥. For each feature i,
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assume that li is a loss function bounded in [0, bi] on X
(i) and s.t. there exists a

ν : R → R with ∥x1 −Πd
i=1ri(x

−i
2 )∥X = ν(

∑d
i=1 li(x

−i, x(i), r(x−i)))7. Assume

that Ri is learnable over (Πd
i=1X

−i)×X(i) through an algorithm Ai with ϵ
Ri,Ai

L .
We set Reg to be the imputation mechanism defined coordinate wise by:

Reg(S, (x, y))i =

{
x(i) x(i) ̸= ⊥
Ai(T

i
C)(Fill(T

−i)j) otherwise
, (9)

where T i
C = {(Fill(T−i)j , x

(i)
j ) : xj ∈ T ∧ x(i)j ̸= ⊥}.

Then, with probability larger than 1 − δ over the sampling of S ∼ Dm and
T = {(CorruptS(x, y) : (x, y) ∈ S}, it holds that E[∥x − CorruptS(x, y)∥X ] can
be upper bounded by ν(ϕ(T, l,R1, . . . ,Rd)), with ϕ(T, l,R1, . . . ,Rd) being:

d∑
i=1

2Rad(li ◦ Ri ◦ T i
C) +

1

SC
i

m∑
j=1

l1(x
−i, x(i), Ai(T

i
C))1x(i)

j ̸=⊥ + 4bi

√
2 log(4d/δ)

|SC
i |

,

(10)

where T i
C = {(Fill(T−i)j , x

(i)
j ) : xj ∈ T ∧ x

(i)
j ̸= ⊥} and Rad is the empirical

Rademacher complexity.

Corollary 1. Assume the same setting as in Theorem 4. Let L be the distri-
bution over X induced by the composition of D, M and Fill. Assume, further,
that: 1) L is realizable; 2) Rad(li ◦Ri ◦T i

C) → 0 as |T i
C | → ∞8; 3) ν is monotone

increasing and limz→0+ ν(z) = 0. Then limm→∞ ϵCorrupt(m, δ) = 0.

Finally, we prove instantiantions of Theorem 4 for two concrete class of re-
gression models, namely linear models (used, for example, by the MICE library
[44]) and tree ensembles (used, for example, by the missForest library [43]).

Corollary 2. Assume the same setting as in Theorem 4. Assume that each of
the loss functions li is L-Lipschitz and can be written as gi(⟨h, ϕ(x)⟩K), where
g, ⟨·, ·⟩K and K are defined as in Theorem 2. Assume further that the derived
norm ∥ · ∥K is the ℓ2 norm over K and suph∈H ∥h∥K = B. Then, it holds that

Eq. (10) can be upper bounded by
∑d

i=1 R̂Fill(Ai(T
i
C)) + 2 supx∈X

LB∥ϕ(x)∥K√
|SC

i |
+

4bi
√

2 log(4d/δ)

|SC
i | , where R̂Fill(h) =

1
SC
i

∑m
j=1 l1(Fill(T

−i)j , x
(i)
j , h(T i

C))1x(i)
j ̸=⊥ Sim-

ilarly, under the same assumptions as above but requiring that the derived norm
∥ · ∥K is the ℓ1 norm over K, it holds that Eq. (10) can be upper bounded by∑d

i=1 R̂Fill(Ai(T
i
C)) + 2LB supx∈X ∥ϕ(x)∥∞

√
2 log(2(d−1))

|SC
i | + 4bi

√
2 log(4d/δ)

|SC
i | .

7 For example, if ∥ · ∥ℓ2X , then, setting li(x, y, r) = (y − r(x))2 and ν(x) =
√
x satis-

fies the mentioned condition. Indeed, ∥x−Πiri(x
−i)∥ℓ2X =

√∑
i(x

(i) − ri(x−i))2 =

ν(
∑

i li(xi, yi, ri)). Similarly, if ∥ · ∥ℓ1X then setting li(x, y, r) = l1(x, y, r) = |y− r(x)|
and ν the identity, also satisfies the mentioned condition.

8 This condition holds, in particular, for both the class of linear models bounded in
ℓ1 or ℓ2 norm, as well as the class of ensembles of regression trees.
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Corollary 3. Assume the same setting as in Theorem 4. Assume that, for each
i, X(i) is bounded in [−B,B]. Assume, further, that for each i, Ri is the class
of ensembles composed by at most r regression trees with depth at most k.
Then, it holds that Eq. (10) can be upper bounded by

∑d
i=1 R̂Fill(Ai(T

i
C)) +

4bi
√

2 log(4d/δ)

|SC
i | +O

(
bi

√
r2k+1 log(d·2k+1) log(Br)

|Sc
i |

)
Theorems 3 and 4 provide a bound on the noise introduced by constant and

regression imputation. Theorem 3 reveals that noise risk stability is not sufficient
as a condition for learnability under imputation if we restrict the imputation
mechanism to be mean imputation, as this latter does not provide a consistent
estimator for the real (unobserved) data, even in the best case. Indeed, in such
a situation, one would need the stronger condition limm→∞ ϵNRS(m, ϵ, δ) = 0,
irrespective of ϵ, because the small noise constant ϵ will be lower bounded by
the trace of the covariance matrix. This fact is a manifestation of the issue
we mentioned in the previous section wherein for a fixed class of imputation
mechanisms (in this case, mean imputation), it may not be possible to have a
vanishing generalization gap, even for a class of models that is learnable under
imputation. At the same time, if the conditions for Eq. (7) are satisfied, and using
gradient descent as a learning algorithm, learning is possible even while using
such an inconsistent imputation mechanism. This allows deriving the following:

Corollary 4. Let FVv be defined as in Theorem 3. Let H, X ⊆ K, with K
being a Reproducing Kernel Hilbert Space with ∥ · ∥K being the corresponding
norm, that is H-bounded on H and B-bounded on X. Assume that l(x, y, h) =

g(⟨h, ϕ(x)⟩K) + λ(m)
2 ∥h∥2K , with g differentiable, M -smooth, b-bounded and sat-

isfying the assumptions required for Eq. (6) to hold. Let A = GD be gradi-
ent descent with step-size as defined in Theorem 2 and executed for T steps.
Then, with probability larger than 1 − δ over the sampling of S ∼ Dm and
T = {(CorruptS(x, y), y) : (x, y) ∈ S}, and requiring λ(m) ≤

√
m and in-

creasing in m, it holds that R(GD(T )) − R̂T (GD(T )) goes to 0 as m → ∞,

and is upper bounded by 2Bmax{HL,λ(m)H2}√
mini |SC

i |
+ 4(b + λ(m)

2 H2)
√

2 log(8/δ)

mini |SC
i | + (b +

λ(m)
2 H2)

(
1− 1

2(B2M+λ(m))

)T

+
HL(Tr(Σ)+E[∥v(T )−µ∥X ])+2BHL

√
log(4/δ)

2m + δ
2BHL

λ(m) .

In particular, the previous bound holds for (kernel) ridge regression (i.e.,
g(z) = (y − z)2) with M = 2, L = 2BH, and for (kernel) shrinked logistic
regression (i.e., g(z) = log(1 + e−yz)) with M ≤ 1

4 , L = 1.

Corollary 4 is related to and, in some sense, generalizes the main result in
[5]. Indeed, while the results in [5] are only applicable to linear ridge regression
in the realizable setting, using naive imputation (i.e., constant imputation with
0), and assuming that M satisfies ∀i,Mi(⊥|(x, y)) = c, in contrast, Corollary
4 can be applied to a larger class of regularized linear-in-parameters models,
any form of constant imputation, no assumptions on the missingness mechanism
and also in the agnostic setting. On the other hand, the results in [5] provide
tighter finite-sample bounds for learnability under imputation of linear ridge
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regression. In this sense, the two results provide a complementary perspective
on the generalization properties of linear models in learning under imputation:
we leave to future work the study of additional conditions under which tighter
bounds in the style of [5] for the class of models discussed in Corollary 4.

Even though the previous Corollary illustrates that learnability under im-
putation is still possible even when considering only inconsistent imputation
mechanisms, in general the convergence of the generalization gap could be much
slower than optimal. Indeed, as previously shown in [25], one can expect regres-
sion imputation to provide better generalization guarantees in general scenarios.
For example, as a consequence of Theorem 4, whenever the features are not
uncorrelated and the regression models are consistent, the small noise constant
ϵCorrupt for regression imputation vanishes as the sample size grows to infinity.
This holds, in particular, for regression models that are universal approxima-
tors (e.g., kernel regression model [32], studied in Corollary 2, or also model
ensembles [11]), studied in Corollary 3). We note, however, that the assump-
tions mentioned in Theorem 4 are rather strong, as they imply that features
are not just merely strongly correlated under the data generating distribution
D, but are so also under the perturbed distribution determined by the miss-
ingness mechanism M and the Fill function. In practice, Fill may itself depend
on the corrupted sampled dataset T [7, 27, 43], making the study of correlation
particularly hard. Therefore, precisely characterizing the conditions under which
regression imputation provides an asymptotically optimal imputation strategy,
remains an open question. We leave to future work the study of more general
conditions under which the noise introduced by regression imputation vanishes,
as well as the study of other imputation strategies and their properties.

6 Illustrative Experiments

In this section we illustrate our results by means of two simple experiments. In
the first example we demonstrate the application of Theorem 2, for both mean
and regression imputation, in the simplified (but practically relevant) setting
of (regularized) linear regression (as previously studied in [4]). In the second
example, by contrast, we demonstrate the application of Theorems 3 and 4.

For the first experiment, we first generated a 10-dimensional vector w. Then,
given a sample size m, we generated a dataset X of dimensionality 10, which
was subsequently split into a training set T and a validation set V , with sizes,
respectively, equal to 0.8m and 0.2m. The target variable was generated as
y = Xw. Data were generated uniformly at random between 0 and 1, and then
instances were normalized9. 20% of the entries, randomly selected, in both X
and V were set to missing. We then applied, respectively, mean imputation and
regression imputation (using Ridge regression as the regression model): by con-
struction, ϵCorrupt ∼ 1

2 , regardless of the imputation mechanism. Then, we fitted

9 By construction, he covariance matrix Σ is the identity matrix.
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a ridge regression model10, using regularization coefficient λ = log(|T |), on the
imputed training set, reconstructing a regularized linear model w′. In the exper-
iment, we varied the sample size m from 100 to 10000 and assessed the error
of the reconstructed model w′ in terms of the l2 loss on the validation set: i.e.,
1

|V |
∑

(x,y)∈V (y − ⟨w′, x⟩)2. The empirical error was compared with the theoret-

ical estimates given by Theorem 2, Eq. (7). To account for uncertainty due to
randomization, the above simulations were repeated 10 times, and we report the
average error and 95% confidence intervals resulting from the experiments.

The results of the first experiment are illustrated in Figure 1. First of all,
we note that there were no significant differences between mean and regression
imputation. This result is not surprising: indeed, by construction, regression im-
putation cannot be expected to outperform mean imputation, as no information
in the features can reliably be used to predict the missing data11. More generally,
in both cases, the results provide a confirmation of Theorem 2 since, in all cases,
the empirical error is upper bounded by the generalization curve predicted by
the proven results. In general, the theoretical bounds become tighter with in-
creasing sample size: indeed, as shown in Figure 1, the theoretical generalization
curve rapidly (in fact, exponentially) decreases, approaching the observed em-
pirical error. At the same time, the results of the experiment show that the
proven bounds are not the tightest possible (at least in the simple setting of
independent features and missing completely at random data, as assumed in
the experiments), and hence finding tighter bounds (as well as matching lower
bounds) could be of significant practical interest.

As for the second experiment, given a sample size m, we generated a dataset
of dimensionality 10, which was subsequently split into a training set T and a
validation set V , with sizes, respectively, equal to 0.8m and 0.2m. The dataset
was generated according to a random probabilistic graphical model [26]: first,
we selected, uniformly at random between 1 and 10, a number of features (root
features) to be generated uniformly at random; each subsequent feature f was
generated by first randomly selecting a subset of the already generated features
(the parents of f) and then defining f as a random linear combination of its par-
ents. The instances in the generated dataset were then normalized. For the root
features, 20% of the entries, randomly selected, were set to missing. By contrast,
for each other feature f , we generated a random logistic regression model based
on the parents of f , setting to missing values for which the logistic regression
model predicted a target smaller than 0.5. We then applied, respectively, mean
imputation and regression imputation (using ridge regression as the regression
model), fitting the model on the training set and then evaluating imputation er-
ror on the validation set. These empirical error estimates were compared with the
theoretical upper bounds given by Theorems 3 and 4. To account for uncertainty

10 We note that ridge regression with the above regularization setting defines a
||w′||−Lipschitz learning problem satisfying the additional assumptions for Eq. (7),
with Mg = Mr = 2, b = 1, B = 1, and µ(m) = 2 log(m).

11 Indeed, the data-generating distribution adopted in the experiment ensures indepen-
dence of the features and missing completely at random data [30]
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Fig. 1. Results of the experiment illustrating Theorem 2. The blue curve represents
the empirical error, the orange one the theoretical bound given by Eq. (7).

due to randomization, the simulations were repeated 10 times, and we report the
average error and 95% confidence intervals resulting from the experiments.

The results of the experiment are illustrated in Figure 2. In contrast with
the previously described experiment, regression imputation reported on average
a smaller imputation error: in several cases, the observed differences were sig-
nificant. This result shows that, in general, regression imputation can be more
effective than mean imputation (more generally, constant imputation) whenever
the data is not missing completely at random12. More in general, we observe that
the theoretical upper bound given by Theorem 3 provides a tight approximation
to the expected imputation error of constant imputation, as the predicted value
was almost always in the 95% confidence interval for the actual imputation error
(only form = 2500 the theoretical guarantee strictly upper bounded the imputa-
tion error): this shows that, in general, the given result for constant imputation
may be tight. By contrast, the guarantee in Theorem 4 always strictly upper
bounded the imputation error of regression imputation: while the deviation be-
tween theoretical and actual imputation error rapidly decreased with increasing
sample size, the upper approximation is not the tightest possible, showing that
the bound in Theorem 4 could be further improved.

7 Conclusion

In this article, we studied the interplay between learnability and imputation
within the framework of statistical learning theory. In particular, we provided a
necessary and sufficient condition for learnability under imputation, and showed
that a large class of ML models satisfies this condition. Finally, we studied the

12 By construction, the adopted experimental design ensures that the data is missing
at random [30].
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Fig. 2. Results of the experiment illustrating Theorems 3 and 4. For each imputation
method, the solid line represents the empirical imputation error, while the dashed one
represents the theoretical estimate.

behaviour of two commonly employed imputation strategies. Taken together, our
results establish finite-sample guarantees and computable generalization certifi-
cates for learning with missing data. Our results set the stage for further formal
exploration of missing data: to this aim, we discussed several open questions as
well as highlighted relevant connections with other ML settings.

Code and Proof Availability

Proofs of all the results, as well as the code employed in the illustrative exper-
iments, are available on GitHub at the following link: https://github.com/
AndreaCampagner/missing_ecml.
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