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Abstract. Data visualization (DV) has evolved rapidly, transforming intricate
datasets into accessible visual representations. However, the intricate grammar of
DV languages, such as Vega-Lite, presents a substantial barrier for beginners and
users without technical backgrounds. To address this challenge, extensive research
has focused on developing models that can translate natural language questions
(NLQs) into DV languages, a process formally known as text-to-visualization in
the field.
With the recent development of speech-related technologies, particularly Acoustic
Speech Recognition (ASR), voice-based interaction has become a growing trend in
real-world applications. In this paper, we introduce speech-to-vis, a novel task that
translates speech-form NLQs into data visualizations. To address the scarcity of
relevant datasets, we present SpeechNVBench, the first manually annotated dataset
specifically designed for this field. Our research reveals that the intuitive cascaded
approach (i.e., ASR followed by text-to-vis) suffers from error propagation issues,
where small errors in earlier stages lead to larger errors in subsequent stages.
In response, we introduce SpeechVisNet, the first end-to-end neural architecture
that directly translates speech-form NLQs into DVs. SpeechVisNet incorporates
advanced structures like a DV-aware decoder to ensure reliable output. Furthermore,
to mitigate the modality gap between speech-modality questions and text-modality
data schema, we explore bridging techniques to align them. Experimentation on our
proposed dataset demonstrates SpeechVisNet’s competitive edge against various
strong baselines. This work aims to drive innovation in human-machine interfaces,
enhancing the efficiency and accessibility of DV tools across various domains.

Keywords: Data Visualization· Data Analysis· Speech-Driven Visualization Sys-
tem· Neural Architecture· Speech-to-Visualization

1 Introduction

With the rapid growth of available data in today’s digital world, the capacity of transform-
ing complex data into meaningful visual representations has become essential for rational
decision-making and eff communication. Data visualization (DV) is a cornerstone in
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this process, leveraging visual elements such as bar charts, scatter plots, and histograms
to convey data information to readers in a straight-forward and intuitive manner [24].
By enhancing the comprehension of data, DV enables users to grasp intricate concepts
and patterns with greater ease and clarity. Recognizing its transformative impact, DV
plays an indispensable role in a wide range of academic and commercial fields, including
but not limited to data mining, databases, recommendation systems, and data analysis
[17, 23, 34, 41]. In recent years, there have been numerous DV-related studies published
in top database conferences and journals such as ICDE [28, 15] and SIGMOD [33, 18],
VLDB [35, 39], and TKDE [42, 17]. For example, Sevi [32], published in SIGMOD’22,
proposed an automatic DV generation system that processes natural language questions
in speech form.

The creation of DVs is usually achieved by composing specifications using the
DV languages. These DV languages, such as Vega-Lite [26], ggplot2 [36], ZQL [27],
ECharts [16], and VizQL [13], defined in form of complicated grammars, where a
json configuration file can be executed to produce a visualization chart. They empower
professionals and seasoned scholars to craft sophisticated visualizations tailored to
their needs, while also presenting substantial challenges for common users due to the
complexity and steep learning curves. To bridge the gap, text-to-visualization (text-
to-vis) techniques have been proposed to automate the translation of natural language
questions (NLQs) into DVs, unlocking the power of databases and visualization systems
for users with limited technical skills [18]. In this context, a significant body of work has
contributed to the field’s progress [18, 31].

Fig. 1: Speech-to-Vis Process: From Voice Query to Data Visualization. This chart
illustrates the workflow of converting a speech-based natural language question and
database schema into a corresponding data visualization. It demonstrates how spoken
queries can be transformed into visual representations of data, bridging the gap between
verbal communication and visual analytics.

On the other hand, with the widespread utilization of smartphones and tablets,
applications like voice search, AI assistants, and chatbots have gained popularity. Thus,
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the evolution of speech-based input systems has presented new avenues for the field of
data querying and analysis. Several substantial studies published in top database venues
have addressed speech-based data querying [30, 29, 19] and DV [32]. While current
endeavors in DV have predominantly focused on textual natural language inputs, the
potential of speech-based natural language inputs remains largely untapped. Compared
to text-based inputs, speech interfaces offer superior user-friendliness and convenience,
holding potential in areas such as voice search, hands-free operation, smart home
control, and enhancing virtual and augmented reality experiences. In response to the
demand for Speech-based DV systems and models, a task named speech-to-visualization
(speech-to-vis) (Figure 1) has been proposed to generate DV queries from spoken NLQs
automatically.

The few existing speech-to-vis work (e.g., Sevi [32]) in the DV domain, simply
cascades an Automatic Speech Recognition (ASR) model and a text-to-vis model
[18, 31]. However, these systems and approaches suffer from the error propagation
problem [30, 29] (i.e., a small error in the ASR module leads to a much larger error
in the following text-to-vis module) and demand high-quality ASR models for good
performance. Designing an end-to-end speech-to-vis system is necessary but challenging.
Firstly, the scarcity of speech-to-vis datasets poses a fundamental obstacle, restricting the
development and evaluation of end-to-end speech-to-vis models. Secondly, the modality
gap between the speech-based query inputs and the textual-based database information
presents a tough technical challenge for the neural network.

In response to these challenges, we present the speech-to-vis dataset SpeechNVBench,
and a novel model named SpeechVisNet. To our knowledge, SpeechVisNet is the first
end-to-end speech-to-vis model. Our training regimen is structured into three distinct
phases: alignment pre-training, weakly supervised data pre-training, and model fine-
tuning, each designed to enhance the model’s performance and adaptability. Specifically,
to alleviate the first challenge, we manually labeled a new speech-to-vis dataset named
SpeechNVBench by leveraging the public text-to-vis dataset named NVBench [18],
considering factors such as difficulty, length, and domain. Additionally, to further mitigate
the situation where the amount of data is insufficient to fully engage model training, we
utilized a weakly supervised data pre-training approach to provide preliminary processing
before model fine-tuning. To address the second challenge, we designed the sophisticated
SpeechVisNet model and further employed a methodology, utilizing a teacher-student
paradigm for the pre-training step to map the speech-based inputs and textual-based
database information into a unified hidden space. SpeechVisNet also employed a DV
grammar-aware decoder to generate more rigorous and reliable output. Experiment
results show that our model could surpass existing SOTA cascaded baselines.

In summary, our main contributions include:

– We have formalized a novel task named speech-to-vis and have accordingly established
the first human-labeled SpeechNVBench dataset. As the first manually annotated
dataset in this domain, it offers greater possibilities and convenience for following
research on this task.

– We introduced SpeechVisNet, a novel model specifically designed for the speech-to-
vis task. As the first end-to-end neural network model in its field, this framework
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eschews the need for an intermediate text phase, pioneering the capability to directly
convert speech into DV.

– We have designed innovative model training methodologies for our designed end-to-
end approach, encompassing dual pre-training phases and fine-tuning. The Alignment
Pre-training aligns the representational spaces of speech and text inputs through a
teacher-student framework. Concurrently, the Weakly Supervised Data Pre-training
enriches the model’s training by incorporating labels that bypass manual verification.
This synergistic approach of pre-training stages followed by fine-tuning notably
boosts the model’s capabilities, presenting a valuable blueprint for future reference
and in-depth exploration.

– Our SpeechVisNet model has demonstrated exceptional performance in experiments,
achieving state-of-the-art (SOTA) results in the task. It outperforms existing baselines
by a margin, with an improvement of 9.00% in precision.

2 Task Formulation

In this section, we begin by introducing several preliminary concepts that are instrumental
in fostering a deeper understanding of the work that follows, and then we proceed to
provide a formal definition of the text-to-vis task.

Natural Language Question. In this paper, an NLQ serves as a comprehensible
discourse for humans that describes the desired DV, aligning with people’s natural habits
of expression and reading. For non-specialists and novices in the field of DV, utilizing
NLQs to manipulate and process data is a more user-friendly approach, particularly when
the required DV is complex and esoteric.
Visualization Specification. Composing visualization specifications is a crucial step for
visualizing data as graphical charts. Declarative visualization languages (DVLs) available
in the market are Vega-Lite [26], ggplot2 [36], ZQL [27], ECharts [16], and VizQL [13],
each with its grammar. These DVLs detail the visualization’s construction, such as chart
type, color, size, mapping functions, and properties for marks including canvas size and
legends, and thus, determine the visualization specifications. In Figure 1, a specification
in Vega-Lite [26] is given, defining attributes such as data path, mark, and encoding.
Data Visualization Query. The DV query concept, proposed to abstract all possible
DVLs, allows for the execution of queries on databases to retrieve data, akin to SQL
queries. It also provides details necessary for data visualization. In Figure 1, the DV
query specifies a "PIE" type chart and defines the data range and aggregation method.
This query can be easily converted into a visualization specification in DVLs, which the
visualization engine then uses to render the chart. The example in Figure 1 shows this
conversion in Vega-Lite, and it is noted that transforming the query for other DVLs, such
as ECharts, is straightforward.
Speech-to-Vis Task. Suppose we have a dataset D with 𝐼 examples, denoted as
D = {d1, · · · , d𝐼 }, where d𝑖 (𝑖 ∈ 1, · · · , 𝐼) refers to the 𝑖-th example. Every training
example s𝑖 is structured as {𝑥, 𝑦,𝑉}, with 𝑥 representing a speech-form NLQ, 𝑦 denotes
its DV query (which can be further executed to obtain the DV chart), and 𝑉 refers to the
schema of the corresponding database needed to execute 𝑦. Here, the database schema
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𝑉𝑖 contains a set of tables 𝑇 = {𝑡1, · · · , 𝑡𝑀𝑖
}, where 𝑀𝑖 represents the count of tables

in database schema 𝑉𝑖 . For each table 𝑡 𝑗 ( 𝑗 ∈ 1, · · · , 𝑀 𝑖), it includes a set of columns
denoted as 𝐶 = {𝑐1, · · · , 𝑐𝑁 𝑗

}, where 𝑁 𝑗 signifies the count of columns for the table 𝑡 𝑗 .
The goal of the speech-to-vis task is to build a learning-based model that can accurately
generate the correct DV query 𝑦′ from an unseen NLQ-schema pair {𝑥′, 𝑉 ′}. An example
is illustrated in Figure 1 to elucidate the task.

3 Speech-to-Vis Dataset

Within this section, we present one of our key contributions: the SpeechNVBench dataset.
Our presentation will detail its creation methodology, provide an overview of its statistical
properties, and elucidate the criteria used for its partitioning.

3.1 Dataset Creation Process

To address the data scarcity problem in the speech-to-vis domain, we manually created a
dataset named SpeechNVBench by refining a subset of 12,000 samples from the NVBench
dataset [18]. NVbench introduced a novel synthesizer (nl2sql-to-nl2vis) that transforms
the nl-to-SQL (nl2sql) benchmarks into nl-to-vis (nl2vis) benchmarks by analyzing and
processing the Abstract Syntax Tree (AST). Furthermore, on this foundation, the data
is validated and annotated by experts and crowd workers. On the foundation of this
nl2vis benchmark, we meticulously evaluate and filter the data by considering a range
of factors including its complexity, length, category, and relevance to specific domains.
Specifically, in NVbench, where a one-to-many relationship exists between (NLQs, DVs)
pairs, we first guarantee the inclusion of every DV instance within our dataset. Then
we endeavor to expand our dataset to a suitable scale while preserving the original
benchmark’s proportionate distribution of difficulty and types. Subsequently, leveraging
the contributions of 32 crowd workers who provided voice recordings, and dedicated 100
hours of meticulous work, we have labeled and constructed the speech-to-vis dataset. In
this context, the workers encompass English learners from a wide range of ages, genders,
and proficiency levels. They deliver voiceovers in English that, with fluent and largely
standard, are characterized by their unique accents, contributing to the rich diversity of
the audio data within the dataset. Further details regarding these individuals are available
in the appendix.

This process involved a comprehensive assessment of factors such as hardness, length,
and domain relevance. Subsequently, we enlisted the assistance of 32 crowd workers,
diverse in age and gender, dedicating around 100 hours to annotate and construct this
speech-to-vis dataset meticulously.

3.2 Dataset Analysis

Dataset overview. The SpeechNVBench dataset encompasses 153 distinct databases,
comprising a total of 780 tables spanning 105 domains. The 153 databases within the
dataset contain 780 tables, 4,017 columns, and 1,000,572 rows. So the average number
of columns/rows in the 780 tables is 5.15/1,282.78. Ranging from the minimal to the
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(a) Distribution of Data Hard-
ness Levels in SpeechN-
VBench

(b) Distribution of Charts Types in
SpeechNVBench

(c) Distribution of Data Hard-
ness Levels in Question-Based
Data Partitioning

(d) Distribution of Data Hardness
Levels in Cross-Domain Data Par-
titioning

(e) Distribution of Styles in
Question-Based Data Parti-
tioning

(f) Distribution of Styles in
Cross-Domain Data Partition-
ing

Fig. 2: Statistical overview of the complete dataset and its partitioned subsets, including
hardness and styles, Categorized by hardness levels Easy(E), Medium(M), Hard(H), and
Extra Hard(ex) and Style Types Bar(B), Pie(P), Line(L), Scatter(S), Stacked Bar(SB),
Grouping Line (GL), Grouping Scatter (GS).

maximal, the dataset includes a table with just two columns and one row, contrasting
with another that spans 48 columns and features 183,978 rows.

(SPEECH, DV) statistics. The WAV2VIS dataset, similar to NVBench [18], encompasses
12,000 pairs of (Speech-form questions, DVs), sharing 7,274 DVs with the NVBench
dataset. Each DV in the SpeechNVBench dataset corresponds to one or more Speech-from
questions. Among these 12,000 pairs of (Speech-form questions, DVs), they encompass
7 types of charts, further classified into four difficulty levels. The detailed difficulty
statistics of this dataset can be found in Figure 2.

3.3 Dataset Partitioning

Two recommended dataset partitioning approaches are available. The first, known as the
question-based method, ensures that identical audio inputs are not shared between the
test set and the training/validation sets while allowing for the possibility of identical DVs
appearing in both. This method is straightforward for model training. The second method
termed the cross-domain method, prohibits the presence of the same database in both the
test and training/validation sets, requiring stronger model performance and cross-domain
transferability. Both approaches are provided within the dataset for users’ convenience.
We also present specific details regarding the two methodologies of dataset partitioning
in Figure 2. Following [31], we use the second approach in our experiments.
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Fig. 3: The network structure of our proposed SpeechVisNet model, which consists
of a speech encoder, a schema encoder, and a DV grammar-based decoder to achieve
end-to-end speech-to-vis translation. To bridge the modality gap between the speech
query (i.e., speech modality) and the database schema (i.e., text modality), a novel
pre-training approach is also utilized to align the representations of both speech and text
into the same hidden space.

4 Our Proposed Model: SpeechVisNet

In this section, we delve into our SpeechVisNet model, tailored for the speech-to-vis
task, beginning with a comprehensive overview of the framework and then proceeding to
elucidate the specifics of each constituent part.

4.1 Framework Overview

Due to the significant modality gap between speech NLQ and DV, developing an end-to-
end speech-to-vis model presents considerable challenges. Our proposed SpeechVisNet
model comprises three main components: a speech encoder, a schema encoder, and a DV-
aware decoder. Our speech encoder harnesses the capabilities of the W2V-BERT model
[3]. It employs a CNN neural network to process input and leverages the masked language
model (MLM) pre-training task of the BERT model to enhance the transformation of
speech signals into hidden representations. Simultaneously, information about the tables,
columns, and values of the required database is integrated as a natural language input
and fed into the schema encoder. We then adopt a pre-training approach inspired by
SONAR [9], aligning the representations of both speech and text inputs into the same
vector space. Drawing inspiration from existing architectures for Speech-to-SQL tasks
[30, 29] and text-to-vis [31] tasks, the DV-aware decoder first predicts an intermediate
AST tree using SemQL [12], which then can be translated into a DV query to obtain the
final chart. The overall structure of the model is illustrated in Figure 3.
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4.2 Schema Encoder

We have adopted the architecture of the NLLB [4] to serve as our schema encoder,
which ingests pertinent database information, encompassing table and column names.
Specifically, this component is designed with a foundation in transformer mechanisms
and is enhanced by the strategic intercalation of a Mixture of Experts (MoE) layer at
every three layers, effectively supplanting the traditional Feed-Forward Network (FFN)
sublayers. Each MoE layer within the architecture is composed of 128 specialized experts
and is paired with a gating mechanism that directs the allocation of tokens. Through the
speech encoder, we derived the schema representation 𝑍𝑣 .

4.3 Speech Encoder

We have constructed a speech encoder architecture inspired by the paradigm of w2v-BERT
[3], which adopts conformer layers [11] for constructing the network. As referenced
in [11], the conformer architecture—integrated with convolutional neural networks
(CNNs) and transformer mechanisms—offers a superior approach to speech modeling.
This integration effectively captures the nuanced interplay between the local and global
contextual relationships within audio sequences, outperforming a standalone transformer
or CNN layers. Upon processing through the speech encoder, we have obtained the
speech representation 𝑍𝑎.

4.4 DV-aware Decoder

Given that DV languages are essentially executable statements grounded in syntactic
structures, we opted to design a structured decoder that leverages the syntactic prior
knowledge inherent in these languages. In alignment with the established approach in
the text-to-SQL field, as delineated in [12], which integrates the SemQL grammar and
constructs a corresponding decoder, we have tailored a similar grammar-aware neural
architecture. The intricacies of the grammar are illustrated in the lower right corner of
Figure 3. Specifically, our DV-aware decoder utilizes an LSTM architecture to generate
data visualizations by selecting a sequence of actions represented as 𝑦̃. Mathematically,
the generation process of a SemQL DV query 𝑦̃ can be formalized as follows:

𝑝( 𝑦̃ |𝑥,𝑉) =
𝐾∏
𝑖=1

𝑝(𝑎𝑐𝑡𝑖 |𝑥,𝑉, 𝑎𝑐𝑡<𝑖), (1)

where 𝑥 and 𝑉 have already been defined in Section 2, and 𝑎𝑐𝑡𝑖 represents an action
taken at step 𝑖, 𝑎𝑐𝑡<𝑖 denotes all actions preceding step 𝑖, and 𝐾 is the total number
of actions required to predict 𝑦̃. To specify, ’actions’ refers to the grammar reasonings
in the Rules Application or Schema Selection phase mentioned later. The processes
encompassed within the formulation of the equation are delineated into two steps:(i)
Rules Application: This step involves the application of a production rule to progressively
develop the current grammar tree, culminating in the completion of the DV sketch. (ii)
Schema Selection: This step involves selecting specific column and table elements from
the schema to generate the DV query from the sketch.
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(a) Alignment Pre-training (b) Weakly Supervised Data Pre-training (c) Model Fine-tuning

Fig. 4: The flowchart of the model training process. Figure (a) corresponds to the
alignment pre-training phase, where 𝑋𝑎 and 𝑋𝑠 signify the speech and textual inputs that
correspond to identical content. The outputs of the two encoders are indicated by 𝑍𝑎 and
𝑍𝑏. Utilizing these, we calculate the MSE Loss, which guides our pre-training process.
Furthermore, in Figures (b) and (c), 𝑋𝑎 corresponds to the speech query inputs that are
crafted in the weakly supervised pre-training stage and the inputs used in the formal
training sessions. On the other hand, 𝑋𝑠 signifies the text inputs related to the pertinent
database information.

Rules Application. The Rules Application phase is designed to formulate a context-free
grammar tree that underpins the structure of a DV query, following the approach outlined
in [12].In this iterative process, we strategically identify the most likely branch at each
juncture, leveraging an LSTM-driven framework to navigate the construction. In this
iterative process, we discern and opt for the branch with the highest likelihood based on
the established route, utilizing an LSTM-based network. Specifically, for each predictive
interval 𝑖, the LSTM’s internal state is updated, contingent upon the previous state
ℎ𝑖−1 ∈ R𝑑𝑚 , previous action embedding 𝑎𝑐𝑡𝑖−1 ∈ R𝑑𝑎 (𝑑𝑎 is the size of the action
embedding), previous action type embedding 𝑛𝑖−1 ∈ R𝑑𝑡 (𝑑𝑡 is the size of the action type
embedding), and previous context representation of LSTM 𝑐𝑖−1. Here, 𝑑𝑎 denotes the
dimensionality of the action embedding, and 𝑑𝑡 denotes the dimensionality of the action
type embedding, respectively. Subsequently, the attention context across the encoder’s
temporal dimensions can be computed, and the production rule can be evaluated using a
softmax probability distribution, as presented in Eq. 5.

ℎ𝑖 = LSTM( [𝑎𝑐𝑡𝑖−1; 𝑛𝑖−1; 𝑐𝑖−1], ℎ𝑖−1), (2)

𝑐𝑖 = Softmax(ℎ𝑇𝑖 𝑊𝑎𝑍
𝑇
𝑎 )𝑍𝑎, (3)

𝑢𝑖 = tanh( [ℎ𝑖; 𝑐𝑖]𝑊𝑢 + 𝑏𝑢), (4)

𝑝( 𝑦̃𝑖 = 𝑎𝑐𝑡𝑖 |𝑥, 𝑆, 𝑎𝑐𝑡<𝑖) = Softmax(tanh(𝑢𝑇𝑖 𝑊𝑝 + 𝑏𝑝)), (5)

where 𝑊𝑎 ∈ R𝑑𝑚×𝑑𝑚 , 𝑊𝑢 ∈ R2𝑑𝑚×𝑑𝑚 are the learnable weights. When 𝑛𝑎 denotes the
total number of actions associated with the specified grammar, 𝑊𝑝 ∈ R𝑑𝑚×𝑛𝑎 𝑏𝑐 is
trainable bias, and the initial state ℎ0 is obtained by a max-pooling operation of the
speech embedding 𝑍𝑎.
Schema Selection. To address the task of populating the specific elements within a
DV query, we have integrated an LSTM-driven component. The main objective of this
module is to decide which item is involved in the text in the condition of the given
schema. Items to be decided include tables, columns, and operations like max, min,
count, etc. Different from the “rules application” step, the schema exhibits variability
across individual cases, with the desired items also lacking a fixed nature. Accordingly,
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we have utilized a pointer network, as referenced in Pointer networks [37], to address
this challenge. The probability of selecting a schema item is determined through the
following computation:

𝑝( 𝑦̃𝑖 = 𝑎𝑐𝑡𝑖 |𝑥,𝑉, 𝑎𝑐𝑡<𝑖) = Softmax(𝑢𝑇𝑖 𝑊𝑣𝑍𝑇𝑣 ), (6)

where 𝑊𝑣 ∈ R𝑑𝑚×𝑑𝑚 is a learnable weight matrix. Specifically, the selection of table
options is confined to those tables that possess the corresponding selected column.

5 Model Training

To bridge the gap between the embedding vector representations of the two modalities
and maximize the model’s capabilities, we propose a training framework consisting
of two pre-training steps followed by fine-tuning: alignment pre-training (Section 5.1),
weakly supervised data pre-training (Section 5.2), and model fine-tuning (Section 5.3).
We will now delve into a detailed exposition of these components.

5.1 Alignment Pre-training

Following SONAR [9], we use a pre-trained w2v-bert 600 million parameter model to
initialize the speech encoders and train them on training sets such as Common Voice
12 ASR [1], Must-C [6], Voxpopuli [38], and Librispeech [22]. After reviewing prior
research [9, 8] and conducting a thorough analysis, we opted for Attention-pooling
as our ultimate pooling methodology. We chose the Mean Squared Error (MSE) as
the objective loss function for our training regimen because it effectively minimizes
the average squared difference between the predicted embeddings and the actual ones,
thereby ensuring a more accurate representation in the sentence embedding space. This
choice aligns with its proven success in prior studies for fostering model performance
in multilingual and multimodal contexts [25, 14], as well as in applications involving
multilingual speech processing [8]. In particular, we adopted the teacher-student approach,
fixing the parameters of the schema encoder, which takes text as input, as the teacher
model and minimizing the MSE loss between the two to train the student model, which
takes speech as input. The loss function is defined as:

𝐿MSE =
1
𝑁

𝑁∑︁
𝑖=1

(ℎtext
𝑖 − ℎspeech

𝑖
)2, (7)

where ℎtext
𝑖

and ℎspeech
𝑖

represent the embeddings of the text and speech inputs at the same
timestep, respectively.

To better aggregate information and obtain embeddings of the same size, we employed
an attention-pooling mechanism. The output of the attention-pooling layer is calculated
as follows:

𝑧𝑖 =

𝐿∑︁
𝑗=1
𝛼𝑖 𝑗ℎ 𝑗 , (8)
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where 𝛼𝑖 𝑗 is the attention weight, computed as:

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )∑𝐿
𝑘=1 exp(𝑒𝑖𝑘)

. (9)

The attention score 𝑒𝑖 𝑗 is determined by:

𝑒𝑖 𝑗 = tanh(𝑊𝑎ℎ 𝑗 + 𝑏𝑎), (10)

where 𝑊𝑎 and 𝑏𝑎 are learnable weight matrix and bias vector, respectively. Here, 𝐿
represents the number of timesteps in the input sequence, 𝑖 denotes the index of the
output embedding, and 𝑗 denotes the index of the input timestep.

After completing this pre-training phase, we have effectively mapped the two disparate
modalities into a unified vector space, establishing a robust groundwork for the following
stages of pre-training and the fine-tuning process.

5.2 Weakly Supervised Data Pre-training

Post its preliminary alignment pre-training phase, we generated a significant volume of
synthetic data to enhance the model’s pre-training process, aiming to unlock its utmost
potential for performance. During the weakly supervised data generation phase, we
employed Baidu’s text-to-speech (TTS) model to provide vocalization for most of the
data in NVBench. This approach allowed us to amass a considerable volume of unlabeled
weakly supervised data. To elaborate, the synthetic data generated in this phase includes
four distinct AI voice profiles, amassing more than 20,000 dubbing outcomes per profile.
However, this synthetic dataset intentionally excludes the data from the test and validation
sets that are reserved for fine-tuning in the next phase of our process. Given that the
training strategies and methodologies applied in this pre-training phase mirror those
utilized in the fine-tuning stage, we refrain from repeating them here. For comprehensive
insights, one can refer to the section dedicated to fine-tuning for a detailed explanation.

5.3 Model Fine-tuning

Following the pre-training phases previously described, we acquire pre-trained weights
for both the speech encoder and the schema encoder. In this subsequent fine-tuning
phase, we initially load the pre-existing weights from the pre-training phase, if available.
Subsequently, we conduct comprehensive training of the model using speech-to-vis
data. This training is aimed at maximizing the log-likelihood of the ground truth action
sequences, which are defined as follows:

L = max
∑︁

(𝑥,𝑉,𝑦) ∈D

∑︁
𝑎𝑐𝑡𝑖∈𝐴𝑝𝑝𝑙𝑦𝑅𝑢𝑙𝑒

log 𝑝( 𝑦̃𝑖 = 𝑎𝑐𝑡𝑖 |𝑥,𝑉, 𝑎𝑐𝑡<𝑖)

+
∑︁

𝑎𝑐𝑡𝑖∈𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑐ℎ𝑒𝑚𝑎
log 𝑝( 𝑦̃𝑖 = 𝑎𝑐𝑡𝑖 |𝑥,𝑉, 𝑎𝑐𝑡<𝑖)).

(11)

The whole network is trained in an end-to-end style with stochastic gradient descent
methods.
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6 Experiment

This section presents an in-depth assessment of the performance of our proposed
framework, focusing on quantitative metrics. Here, we illustrate the superiority of our
framework by juxtaposing its performance with that of several robust baselines.

6.1 Experimental Setup

Datasets We use the same training set of the SpeechNVBench dataset, which is detailed
in Section 3, to train all the models, tune their parameters with the same validation set,
and finally, evaluate the performance on the same testing set. Considering that the data
partitioning based on question-based methods presents a lower difficulty level for our
model as well as for existing baseline models, and thus does not effectively reflect perfor-
mance differences. We employ a unified cross-domain approach for dataset partitioning,
ensuring that (SPEECH, DV) pairs from the same database do not simultaneously appear
in the training/validation sets and the test set. In this scenario, the quantities of the training
set, validation set, and test set are 8121, 1442, and 2408 respectively. Concurrently, we
strive to ensure an equitable distribution of data hardness and diversity of visualization
chart types across all subsets.

Baselines Current approaches addressing the speech-to-vis task are predominantly based
on a cascaded methodology, integrating ASR models with text-to-vis models, with a
significant lack of end-to-end solutions. In our experiments, we selected four methods as
baseline models, comprising both existing cascaded approach models and ASR integrated
with existing text-to-vis models. Each model was thoroughly trained under the premise
of utilizing the same dataset and adopting an identical dataset partitioning strategy.
For our ASR model, we selected the Paraformer [10], a parallel transformer model
for non-autoregressive, end-to-end speech recognition. Utilizing the SequenceMatcher
class within Python’s difflib library, we calculated the degree of similarity between
the ASR results and the correct labels, obtaining a notable similarity score of 0.89. It
matches the performance of autoregressive models and enhances inference speed through
a Lookahead Language Model sampler and minimum word error rate training.

– ASR-Transformer. The Transformer architecture has demonstrated its effectiveness
in seq2seq tasks. Since the speech-to-vis task falls within the scope of seq2seq tasks,
we aim to adopt this most classic model as the fundamental baseline and compare its
results with our model’s.

– Sevi (i.e., ASR-ncNet). Alongside the introduction of the NVBench dataset, Luo et
al. [18] also proposed ncNet, a model based on the Transformer architecture that
leverages templates and incorporates some manual processing techniques. Then they
introduced Sevi [32], which integrates ASR and ncNet in a cascading manner.

– ASR-IRNet. IRnet [12] is an advanced text-to-SQL model that enhances the
traditional direct approach by representing SQL statements in the SemSQL syntax
as an AST. We modified IRNet to generate a DV query to adapt to our task.
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– ASR-RGVisNet. RGVisNet [31] embodies an integration of retrieval and generation
modules into a new framework, demonstrating impressive efficacy in addressing the
task.

– SpeechVisNet. This is the first end-to-end neural model proposed by us that can
generate visualizations directly from speech-based questions.

Evaluation Metrics Our experimental validation leverages three well-established metrics
from this domain, selected for their capacity to affirm the effectiveness of our innovative
model. The first two metrics are applicable to all models within the speech-to-vis domain,
while the last one is particularly suited for models that generate intermediate sketches.

– Exact Match Accuracy. According to common practice [40], we assess performance
through exact match accuracy, where exact match accuracy measures whether the
predicted query is equivalent to the gold query as a whole. This stringent metric
implies that all elements, such as visualization chart types, x, y, and z-axis, and data
with transformations from the according database, must match accurately.

– Average Time Per Query (TPQ). This particular metric evaluates the average time
expended on inferring a query through various methodologies, thereby reflecting the
swiftness with which a model can handle and interpret speech queries.

– Sketch Match Accuracy. Our model’s decoder generates the final output in two stages:
rules application and schema selection. Upon completing the “rules application”, we
arrive at a sketch that conforms to the DV grammar; think of it as a blueprint for a
DV, devoid of specific table column names and values. We assess the alignment of
this sketch with the correct one from the labels. The metric, sketch match accuracy,
reflects the ratio of accurately generated sketches among the outputs for all queries in
the test set. This metric is instrumental in gauging the model’s detailed performance,
highlighting both its capabilities and areas for improvement.

6.2 Comparison of Accuracy and TPQ

Table 1 displays the accuracy of our proposed model as well as the baselines for the
validation and test datasets, from which we can analyze the experimental results.

In our main experiment, the SpeechVisNet model has delivered impressive accuracy,
showcasing its competitive edge. Specifically, it surpassed the top-performing baseline
model by a notable margin of 9.00% in terms of exact match accuracy on the test dataset.
The grammatical intricacies of DV queries prove too sophisticated for the original
Transformer architecture, leading to outputs that are vague and devoid of accurate queries.
Sevi, which employs templates and some detailed processing, performs relatively better.
However, the open-domain dataset’s requirement for cross-domain capabilities still limits
its performance. The IR-net model and the RGvisnet model, due to their reliance on
the accuracy of the ASR component to generate intermediate text-based NLQs, do not
perform as impressively as they do in text-to-vis tasks. Overall, our model achieved
the highest accuracy and demonstrated the most competitive performance in the main
experiments. It does not rely on ASR models and demonstrates robust cross-domain
adaptability and flexibility.
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Turning our attention to the TPQ, our model demonstrates a markedly shorter
processing time for each query compared to other cascaded models, whether they are
based on seq2seq or grammar-based approaches. This efficiency stems from the fact that
our model operates as an end-to-end, cohesive unit, in contrast to cascaded models which
are segmented into distinct components—an ASR module and a text-to-vis module.

Table 1: Performance Comparison
Models Acc. (↑) TPQ(s)(↓)

ASR-IRNet 0.1582 0.3575
ASR-Transformer 0.0 0.6048
ASR-RGVisNet 0.1238 0.3375
Sevi (ASR-ncNet) 0.3095 0.4471
SpeechVisNet(Ours) 0.3995 0.2547

Table 2: Ablation Experiment
Models Sketch Acc. Exact Acc.

SpeechVisNet 0.7243 0.3995
w/o alignment pre-training 0.2317 0.0
w/o weakly supervised 0.2552 0.0021pre-training

7 Related Work

Our work bridges three key research directions: voice-driven systems, text-to-vis tech-
niques, and speech representation learning.

7.1 Voice-driven Data Querying Systems

Voice-driven systems have evolved significantly in both industry and academia. Early
systems like Dragon NaturallySpeaking laid the foundation, while modern platforms
(e.g., Siri and Alexa) expanded voice interaction to broader applications. In database
querying, EchoQuery [19] pioneered translating specialized voice commands into SQL.
Subsequent works like SpeechSQLNet [29] and VoiceQuerySystem [30] generalized
this to natural language inputs, enabling intuitive data retrieval for non-experts. For
visualization, Sevi [32] introduced a cascaded system combining ASR with a text-to-vis
model. However, existing approaches rely on error-prone cascaded pipelines, leaving
end-to-end speech-to-vis solutions unexplored—a gap addressed by our work.

7.2 Text-to-Vis Techniques

Text-to-vis research aims to democratize visualization creation. Early systems like Text-
to-viz [5] generated infographics from simple textual statistics, while Draco-Learn [20]
formalized design constraints. Deep learning approaches emerged with Data2Vis [7],
framing visualization as a sequence-to-sequence task. NVBench [18] advanced the field
by adapting text-to-SQL benchmarks, enabling transformer-based models like ncNet.
Subsequent work integrated retrieval mechanisms (e.g., RGVisNet [31]) and speech
inputs (e.g., Sevi [32]), but retained cascaded architectures. Our end-to-end SpeechVisNet
eliminates intermediate text conversion, directly mapping speech to visualizations.
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7.3 Speech Representation Learning

Self-supervised speech representation learning underpins modern speech systems. CPC
[21] pioneered contrastive predictive coding, while Wav2Vec 2.0 [2] integrated trans-
formers for context-aware embeddings. w2v-BERT [3] further unified contrastive and
masked language modeling. These advances enabled robust speech encoders critical to
our model. By leveraging w2v-BERT’s architecture, SpeechVisNet effectively aligns
speech signals with textual schema representations, overcoming modality gaps inherent
in end-to-end learning.

8 Conclusion and Discussion

In this paper, we introduce a novel speech-driven model for data visualization, along
with the associated speech-to-vis task and the SpeechNVBench dataset, aimed at directly
converting human-natural language into DV queries. As the pioneering end-to-end
solution in its field, our model has been rigorously tested and proven to excel in
generating DV queries from spoken inputs. It also exhibits a strong competitive edge
when juxtaposed with a multitude of established baselines.

Moving forward, we plan to investigate additional pre-training strategies for systems
that operate on voice input. Our ablation experiments revealed a marked decrease in
performance when the model was not pre-trained. It is meaningful to examine the
causes in-depth, provide a comprehensive analysis, and search for more efficacious
pre-training techniques. Furthermore, our SpeechVisNet demonstrates the practicality of
a speech-based approach to data visualization, leveraging the methodologies outlined in
this research. We are keen to pursue further development in this direction, focusing on
crafting more accessible speech-driven systems, particularly for specialized fields such
as AI interaction and data analysis fields.
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