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Abstract. Attribution methods are essential for interpreting time se-
ries predictive models by quantifying the relevance of each time step for
the prediction. State-of-the-art methods are often based on SHAP, an
attribution method developed for tabular data. However, this has sev-
eral challenges. First, SHAP is expensive to compute, especially for long
time series, hence to speed it up it is usually approximated. Second, the
impact of the background selection for emulating data ’missingness’, es-
sential to compute SHAP, remains understudied. Third, SHAP and more
generally attribution methods for time series regression are notably lack-
ing. In this paper, we address these limitations and propose TSHAP, a
novel SHAP-based attribution method for time series classification and
regression. TSHAP leverages a sliding window to group temporal data,
enabling the efficient computation of exact SHAP values for each
group. We further develop a methodology for the principled selection
of background data. We evaluate TSHAP’s performance and robustness
using comprehensive experiments on synthetic and real-world time series
datasets.
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1 Introduction

Attribution methods quantify the relevance of each input feature for predicting
the target feature by a predictive model. The computed attributions are critical
tools in Explainable Artificial Intelligence (XAI) to explain black-box models
[11, 12]. Time series data are numerical data measured over a time period, where
each value in the time series corresponds to a time step in this period. Time
series data can be extremely long (e.g., millions of time steps) and have multiple
channels (multivariate time series data). Given an input time series and a predic-
tive model, the attribution methods calculate the attribution (relevance score)
for each time step in the time series using only the output of the model. The
attribution signifies the relevance of that time step to the prediction of the model
given the input time series (e.g., Figure 1). These sample-specific attributions
are also referred to as local attributions.

Several attribution methods have been introduced for tabular data, of which
LIME [15] and SHAP [9] are the most prominent. SHAP, based on game theory,
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Fig. 1: Explanation of the ROCKET classifier using an attribution method. The left
panel depicts a time series from the Coffee dataset of the UCR/UEA Archive, and the
right panel shows the attribution profile. The attribution profile indicates the 200-250
range as the most relevant part of the time series for the classifier.

calculates the attribution as the Shapley value of each feature. The Shapley value
is the contribution of the feature towards the overall payout, i.e., the prediction
of the model. The exact SHAP method calculates the contribution of every
possible feature coalition (i.e., subset of features), therefore is known for being
computationally expensive. In addition, SHAP relies on a background dataset
to emulate “missingness” in the data. When SHAP calculates the contribution
of a feature coalition, it essentially substitutes the values of the missing features
(features not in the coalition) with values drawn from the background dataset.
In some works, the background data is also referred to as the baseline data.

While attribution methods such as LIME and SHAP can be directly applied
to time series by treating each time step as an independent feature, this ap-
proach becomes computationally prohibitive for datasets with moderately long
time series (e.g., length > 100). Furthermore, it fails to capture the inherent se-
quential dependencies within the time series. To mitigate these limitations, prior
research [6, 13, 17] has explored grouping consecutive time steps into aggregated
features. For example, a long time series can be segmented, with each segment
being represented by a single feature, thereby reducing the computational bur-
den and preserving local sequential information within each segment. While this
approach reduces the computational cost, it can still increase rapidly with the
number of segments. Moreover, careless segmentation can inadvertently break
the sequential structure of time series. Thus effective and efficient grouping of
time steps for time series attribution methods is still an ongoing challenge.

Furthermore, the influence of background data on SHAP time series expla-
nations is critical but under-researched. Common background options include
all-zero (substituting feature values with zero) and real time series data. The
all-zero background assumes zero represents the absence of information, or miss-
ing data, facilitating attribution calculations. When available, real data (e.g.,
training data) can also serve as background. While computationally efficient, the
all-zero assumption is problematic in time series. We conducted an experiment
using a ROCKET [4] model trained on 49 UCR and UEA [3] binary classification
datasets, predicting on all-zero time series. In 42 instances, the model exhibited
high confidence (probability > 0.95), demonstrating that zero can be informa-
tive, contrary to the underlying assumption of absent information (which should
lead to less decisive probability). Therefore, it is important to study the impact
of background time series on the computed explanation and to develop robust
background selection strategies.
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Most work for explaining time series models focuses on time series classifica-
tion (TSC), where the prediction is a discrete category [10]. Another important
research area is time series extrinsic regression (TSER) [21, 16] . In comparison
to TSC, TSER in general and XAI for TSER are still under-explored areas.
Theoretically, both LIME and SHAP-based attribution methods can be applied
for time series regression as they both work for regression problems with tabu-
lar data. However, none of the previous works explored this possibility in depth
for the time series domain. The main challenge is that the interpretation of
a regression model is not well-formulated, and depends again on the selected
background. The main contributions of this paper to address these challenges
are:

– We present TSHAP, a novel SHAP-based attribution method that can be
used to explain both time series classification and regression models. This
method has two variants: TSHAP Window relies on a sliding window to
efficiently compute exact Shapley values for each window while TSHAP ROI
(Regions of Interest) uses the window attributions to find the important
regions. To our best knowledge, we are the first to study attribution methods
for TSER.

– We study the impact of background selection on SHAP computation and
propose methods to select suitable background data for both classification
and regression tasks. The methods are applicable to any SHAP-based attri-
bution methods, and other methods that rely on background data, for time
series.

– We present experiments to evaluate TSHAP on both synthetic and real
datasets for TSC and TSER. We describe our evaluation methodology us-
ing a hypothetical model and ground truth attributions for the synthetic
data. The results show that TSHAP can be computed more efficiently than
existing methods and achieves high explanation quality (e.g., as measured
using ground truth data and faithfulness measures). All our data and code
is publicly available1.

2 Background and Related Work

2.1 Background

We define a time series x as a sequence of measurements over time:

x = {x1, x2, . . . , xn} (1)

where xi is the measurement at time step i and n is the length of the time
series. In this paper, we only consider univariate time series, hence xi is a scalar.
A predictive model f is a function that maps x to a target value o (i.e., f(x) = o).
For the regression task o ∈ R is a continuous value. For the classification task,
typically o ∈ L is a label, in a finite set of labels L. However, many attribution
1 https://github.com/mlgig/tshap



4 Le Nguyen et al.

methods use the class probability instead of the predicted label to calculate the
attributions (i.e., o ∈ R and 0 ≤ o ≤ 1). This allows these attribution methods to
adapt seamlessly between classification and regression. An attribution method M
takes a time series x and the model f as the input, and outputs the attributions:

M(x, f) = {ϕ1, ϕ2, . . . , ϕn} (2)

where ϕi is the attribution value of xi. In general, the attribution ϕi indicates
how relevant xi is to the prediction f(x) = o. In order to use the attributions
to explain the model f , we first need to define the explanation question for the
machine learning (ML) task.

Interpretation of regression attributions: For regression tasks, the authors
in [8] argue that a reference value r is essential for meaningful explanations.
Without it, the explanation question becomes ambiguous (e.g., “Why is ’o’ pre-
dicted?”). Introducing r allows for a clearer question: “Why is o predicted instead
of r?”. The reference value is user-defined and depends on the specific purpose
of the explanation. In this context, a positive attribution (ϕi > 0) indicates
that the presence of xi supports a prediction greater than r, while a negative
attribution (ϕi < 0) suggests support for a prediction less than r.

Interpretation of classification attributions: For classification tasks, the
explanation question is straightforward:“Why is o predicted as the label of x?”.
Attribution values indicate which time steps support or contradict this predic-
tion. Unlike regression, the alternatives to o are finite, hence reducing ambiguity.
We will also show in Section 3.1 that there is actually an implicit reference value
r for classification attributions. For simplicity, we focus only on binary classi-
fication (i.e., positive versus negative labels). Typically, ϕi > 0 signifies that
the presence of xi supports the positive prediction, increasing model confidence,
while ϕi < 0 indicates lower confidence. The absolute value of ϕi indicates the
“strength” of the support; ϕi = 0 means xi is irrelevant to the model. For multi-
class prediction tasks, we can easily model them as multiple binary classification
tasks.

2.2 Attribution Methods

Two of the most well-known attribution methods in XAI are SHAP [9] and LIME
[15]. LIME is a framework to explain any black-box classification model. LIME
first perturbs the instance of interest to obtain a local dataset, then trains a
linear model on the perturbed data set. This linear model is a local proxy model
that approximates the black-box model in the neighbourhood of the instance of
interest. Thus the black-box model can be explained (locally) by interpreting
the linear model. While its original paper only covers classification models, the
LIME implementation has also been extended to regression models.

On the other hand, SHAP is based on Shapley values, which is a methodology
in game theory to determine the contribution of each player in a collaborative
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game. In the context of machine learning, a feature is a player and the payout can
be obtained from the model predictions. As exact SHAP is known to be expensive
to compute, alternatives including KernelSHAP [9] and Shapley Values Sampling
[22] can be used to estimate the attributions quicker. KernelSHAP approximates
the Shapley values by solving a linear regression problem while Shapley Values
Sampling samples random permutations of input features. Both methods have
been used in the time series domain [13, 17].

LIME-based time series attribution methods. LEFTIST [6] is one of the
first attempts to adapt LIME for time series. The method simply divides the
time series to equal-length segments. In the same paper, the authors propose
three different methods to perturb the time series data which are constant, in-
terpolation, and random background. On the other hand, LIMESegment [19] is
a combination of techniques including NNSegment, a segmentation method and
Realistic Background Perturbation, a time series perturbation method using the
underlying background frequency.

SHAP-based time series attribution methods. WindowSHAP [13] pro-
poses three different ways to explain a time series classification model. The
common idea is to use a window to group consecutive time steps. Stationary
WindowSHAP segments the time series into equal segments before applying
SHAP. Sliding WindowSHAP uses a sliding window instead. Dynamic Window-
SHAP uses a strategy alike to binary search in which it keeps splitting the time
series until a stop condition. Once WindowSHAP segments the time series, it
uses KernelSHAP to compute SHAP attribution values. While KernelSHAP is
faster to compute than exact SHAP, it was shown to behave poorly for many
TSC tasks [17, 24].

TimeSHAP [1] is another SHAP-based attribution method but focused on
multivariate time series. TimeSHAP groups the data channel-wise (each channel
is a feature) and time-step wise (each time step is a feature). Moreover, it prunes
distant-past data by assuming that only recent data is more important. Inter-
estingly, TimeSHAP detects the important events by intersecting the important
channels and important time steps.

Other Methods. Feature Ablation implemented in Captum2 is an extremely
fast attribution method. It simply replaces the feature value with values drawn
from the background data then calculates the difference in model output as the
attribution for that feature. This method was found to perform well on time
series data when combined with fixed segmentation [17].

LASTS [20] is an explanation framework that can explain a black-box time
series classifier in three different ways: a saliency map, prototypical and coun-
terfactual exemplars, and rule-based explanation. A saliency map is similar to
attributions where the relevant parts of the input time series x is highlighted. A
2 https://captum.ai/
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prototypical exemplar is an artificial time series that is similar to x and classified
to the same class of x, while a counterfactual exemplar is an artificial time series
that is also similar to x but classified to a different class. Rules-based explana-
tion provides human-friendly rules such as “If the time series x has this pattern
then f(x) = 0 otherwise f(x) = 1”.

3 Methodology

In this section, we detail our proposed methodology to explain time series models
based on exact SHAP computation.

3.1 Background Data and Reference Value

In general, Shapley values explain the difference between the prediction f(x)
and the expected prediction E(f(X)). The expected prediction plays the role
of the empty coalition (∅) and is estimated using the average prediction on
the background data Xb (i.e., E(f(X)) = E(f(Xb))) [11]. In other words, the
Shapley value calculation (e.g., Equation 7) depends on the background data.
Consequently, using different background can lead to different attributions. This
issue will also be demonstrated experimentally in Section 4.3. We propose the
following strategies to select proper background data for SHAP-based time series
attribution methods.

Selecting background data for regression models: As discussed in Section
2.1, a reference value r is needed for the explanation of regression models. The
attribution methods then aim to explain the difference between f(x) and r. As
SHAP attributions explain the difference between f(x) and E(f(Xb)), it implies
the condition for the regression background data as:

E(f(Xb)) ≈ r (3)

A simple strategy to choose the background data following this condition is
to draw samples from the training data such that f(x) ≈ r.

Selecting background data for binary classification models: For binary
classification models, if we use the output probability of the model instead of
labels, then the explanation has a natural reference value which is the decision
boundary of the output r = 0.5. As a result, the explanation question can be
reformulated as “Why is o but not 0.5 the predicted probability of x?”. From this
perspective, the condition for the classification background data is:

E(f(Xb)) ≈ 0.5 (4)

We explored four classification background data options: (1) training data,
(2) all-zeros, (3) training centroid, and (4) training balanced centroid. While
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training data offers the most balanced expected prediction, its computational
cost for SHAP can be high, due to the need for repeated SHAP computation on
each training sample. Therefore, we only consider single-time-series backgrounds.
The centroid (Equation 5) represents the average of all training time series. The
balanced centroid (Equation 6), used for imbalanced datasets, averages class-
wise centroids, mitigating majority class bias. Both centroid types are artificial
time series (i.e., not actual training samples).

ci =
1

|X|

X∑
x

xi (5) c̄i =
1

|L|

L∑
l

(
1

|Xl|

Xl∑
x

xi) (6)

3.2 TSHAP: Sliding Window Attribution

TSHAP utilizes a sliding window to aggregate time steps. Time steps within the
window are grouped into one feature, and those outside into another feature,
effectively transforming the time series into a two-feature tabular format. Figure
2 showcases this approach.

Fig. 2: An illustration of how TSHAP emulates the ‘missingness’ in the data with a
background sample x̄. We denote with x the input time series and with x̄ the time
series where all data are missing. {x̄w, xw̄} emulates that data inside the window are
missing and {xw, x̄w̄} emulates that data outside the window are missing.

A window w is defined by its starting location ws and its length wl. Let w̄ be
the group of time steps that are outside of the window w (i.e., w and w̄ cover the
entire time series). x is the sample of interest that needs explanation and x̄ is
the background sample (drawn from the background data). The exact Shapley
value of the sliding window w can be calculated as follows:

ϕ(w) =
1

2
(f(x)− f(xw̄) + f(xw)− f(x̄))

=
1

2
(f(x)− f({x̄w, xw̄}) + f({xw, x̄w̄})− f(x̄))

(7)

If there are multiple samples in the background dataset, the attribution is
averaged across all the background samples (Equation 8). Finally, the attribution



8 Le Nguyen et al.

of the time step i is the average attribution of all the windows w ∈ Wi that
contain i (Equation 9).

ϕ(w) =
1

|Xb|
∑
x̄∈Xb

ϕx̄(w) (8) ϕi =
1

|Wi|
∑

w∈Wi

ϕ(w)

wl
(9)

The TSHAP algorithm is summarised in Algorithm 1. Calculating the at-
tribution for every sliding window (stride s = 1) can be expensive, therefore
TSHAP only calculates the Shapley value after every stride (stride s > 1) and
interpolates the attributions of the windows in between.

Algorithm 1: Computing TSHAP Window Attributions
Input: Time series sample
Output: Attributions

1 Instantiate a set of sliding windows with stride s and window length wl.
2 foreach Sliding window w do
3 foreach Background sample x̄ do
4 Calculate the attribution of window w with Equation 7.

5 Calculate the average attribution of window w with Equation 8.

6 Interpolate the attributions of the windows in between.
7 Calculate the attribution of each time step with Equation 9.

3.3 TSHAP ROI: Using Attribution to Identify Regions of Interest

For time series data, it is often useful to identify the important regions in time
series that contribute the most to the model prediction. Moreover, in our experi-
ments, we will show that TSHAP Window can mistakenly spread the attribution
from relevant time steps to the nearby irrelevant time steps. In this section, we
propose an efficient technique to mitigate this issue and identify these important
regions using window attributions. The exact steps to search for the regions of
interest are described in Algorithm 2.

4 Experiments

4.1 Attribution Methods

In this section, we consider the following attribution methods for comparison.

– Time Series Classification: TSHAP, WindowSHAP, Shapley Value Sam-
pling, Feature Ablation, LIMESegment, LEFTIST.

– Time Series Regression: TSHAP, WindowSHAP, Shapley Value Sam-
pling, Feature Ablation.



TSHAP: Fast and Exact SHAP 9

Algorithm 2: Computing TSHAP Regions Of Interest
Input: Time series sample
Output: ROI Attributions

1 Calculate all the TSHAP window attributions with Algorithm 1 (until Line 6).
2 Each window wi is marked as relevant if |ϕ(wi)| > ϵ where

ϵ = 0.1×max(|ϕ(wi)|) is the relevant threshold.
3 Group the consecutive relevant windows.
4 foreach Group of consecutive relevant windows do
5 The region of interest wROI is the combination of all windows in the group.
6 Calculate the attribution of the window ŵ with Equation 8.

7 Attribution of each time step i inside wROI : ϕi =
ϕ(wROI)

length(wROI)

We note that TSHAP has two variants: TSHAP-Window and TSHAP-ROI,
while WindowSHAP has three variants: Stationary, Sliding, and Dynamic. Fea-
ture Ablation and Shapley Value Sampling are also included as they were found
to be effective in the quantitative evaluation of [17]. For these methods, we use
the tsCaptum package [18]. LIME-based methods (LIMESegment and LEFT-
IST) are excluded from the regression experiments because their current imple-
mentation does not support regression models. For a fair comparison, we set
the parameter window length at 10% of the length of the time series and stride
s = 5 for TSHAP, WindowSHAP; the number of segments = 10 for Shapley
Value Sampling, Feature Ablation. All remaining hyper-parameters are left with
the default values.

4.2 Evaluation Methodology

We evaluate our proposed methods using a synthetic dataset and real datasets
from the UCR archive. For the synthetic dataset, we build a hypothetical model
which predicts the target value using human reasoning. Then we assign an at-
tribution value to each time step in accordance to its relevance to the hypo-
thetical model. Thus these attributions are the ground truth attributions Φ of
the hypothetical model. Finally, we explain the hypothetical model with the at-
tribution methods then compare the output with the ground truth attributions
using cosine similarity, precision, recall, and F1. Previous works [2, 17] also used
assigned-by-human attributions but with ML models to test synthetic data; how-
ever we argue that these attributions are not the ground truth attributions of
the ML models. Cosine similarity is a well known metric to quantify the simi-
larity between two (attribution) vectors. To calculate precision, recall, and F1,
we construct the confusion matrix as in Table 1.

On the other hand, faithfulness analysis is a common approach [23] to eval-
uate classification attribution methods with real datasets. In this approach, the
most relevant part of the time series (identified by the attributions) is perturbed
to create a new time series. The comparison between the new prediction (on
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Table 1: Confusion matrix for evaluating the attributions ϕ using the ground truth Φ.
True relevant means both attributions are relevant in the same direction (both support
or oppose the prediction). True irrelevant means both attributions are irrelevant. False
relevant means ϕi is relevant but Φi is irrelevant or relevant in the opposite direction.
False irrelevant means ϕi is irrelevant but Φi is relevant.

True False
Relevant ϕi × Φi > 0 ϕi ̸= 0 and ϕi × Φi ≤ 0

Irrelevant ϕi = 0 and Φi = 0 ϕi = 0 and Φi ̸= 0

the new time series) and the original prediction (on the original time series)
can indicate the faithfulness of the attributions. Equation 10 and 11 show how
faithfulness is calculated in our experiments where f outputs probability. xp is
the resulting time series from perturbing the positive attribution part; xn re-
sults from perturbing the negative attribution part. The perturbation is done by
substituting the top 10% most relevant data with zero.

faithfulness =
1

|X|
∑
x∈X

(f(x)− f(xp) + f(xn)− f(x)) (10)

=
1

|X|
∑
x∈X

(f(xn)− f(xp)) (11)

Existing classification faithfulness evaluations [14, 24] often measure accuracy
drops after perturbation. However, this method relies on the test set ground
truth and the original accuracy of the predictions; moreover perturbation can
inadvertently correct misclassifications, leading to inaccurate assessments. Our
analysis instead measures changes in prediction probability regardless of predic-
tion accuracy, ensuring the direction of change aligns with attributions. Perturb-
ing time steps with positive attributions should reduce model confidence (i.e.,
f(x)− f(xp) > 0) while perturbing time steps with negative attributions should
increase it (i.e., f(xn) − f(x) > 0). Higher positive faithfulness scores indicate
greater attribution fidelity.

4.3 Synthetic Dataset

The synthetic time series data generation is inspired by the work of [24].
We use the original code and adapt it so each time series is created by inserting
two segments of sine wave signals (s1 and s2) to a silent signal at two different
places (Figure 3). The length of the time series is 200. There are 30 samples for
the training set and 30 samples for the test set. For the regression problem, the
target value is the sum of the frequencies of the sine waves. For the classification
problem, a threshold τ = 60 is used to separate the samples into two classes:
below the threshold (negative) and above the threshold (positive).

The hypothetical model estimates the frequency of each sine wave seg-
ment by counting the number of cycles in the segment. Algorithm 3 and 4 are
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implemented as the predict functions for the hypothetical regression model and
classification model respectively.

Algorithm 3: Regression Prediction
Input: Time series sample
Output: Total frequency

1 Count the number of cycles in the first segment.
2 Estimate the frequency of the first segment from the number of cycles.
3 Count the number of cycles in the second segment.
4 Estimate the frequency of the second segment from the number of cycles.
5 Return the sum of the frequencies.

Algorithm 4: Classification Prediction
Input: Time series sample
Output: Label of the time series sample (positive or negative)

1 Estimate the frequency sum using Algorithm 3.
2 Return positive if frequency sum > τ otherwise return negative.

The ground truth attributions Φ: Each time step i is assigned with an
attribution Φi calculated by Equation 12 for the regression problem and Equation
13 for the classification problem:

Φi =

{
fj −

r

2
if i inside sj

0 if i not inside sj
(12) Φi =

{
fj −

τ

2
if i inside sj

0 if i not inside sj
(13)

where sj (j = 1 or 2) is the sine wave segment and fj is the frequency of sj .
The idea is that if the frequency of one segment fj <

τ

2
then it is less likely that

the time series is a positive sample (i.e. sum of frequencies > τ) and if fj >
τ

2
then it is more likely that the time series is a positive sample.

Classification Background Analysis. In this experiment, we study the im-
pact of the background selection on the classification attributions. We include
five different choices of background: zero, centroid, balanced centroid, train data,
threshold. Threshold background is a special sample that has two identical sine
wave segments with the frequency = 0.5×τ . This is an ideal background sample
that is located on the decision boundary of the hypothetical classification model.

Table 2 shows the (average) cosine similarity between TSHAP attributions
and the ground truth attributions. In addition, the table also includes the (av-
erage) probability of the predicted class of the background data. We note that
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Table 2: Cosine similarity between TSHAP attributions and ground truth attributions.
Runtime is the total time required to compute attributions for the test dataset.

Background Avg Cosine sim Avg proba Runtime(sec)
Zero -0.174 1.0 0.06
Train 0.906 0.62 5.95

Centroid 0.708 0.99 0.06
Balanced Centroid 0.646 1.0 0.07

Threshold 0.911 0.54 0.07

attributions with different background data give very different results. An appar-
ent trend is that the closer the background data is to the decision boundary (the
average probability closer to 0.5), the more accurate the attributions, although
using the train data comes with a higher cost of running time. This experiment
highlights the issue of inappropriate background data (all-zero background in
this case) and supports our proposed strategy on choosing the background data
for classification attribution methods.

Fig. 3: TSHAP Window attributions on a synthetic time series using various back-
ground data. The left panel displays the time series, and the right panel shows the
attribution profile. The time series is color-coded: red for positive and blue for nega-
tive attributions.

Classification Attribution Methods. In this experiment, we evaluate the
attribution methods for classification problems using the synthetic dataset. For
methods that require background data, we use the train data as the background.
To establish a baseline, we included a random attribution method, assigning
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values between −1 and 1 to each time step. Any effective attribution method
should outperform this random attribution.

Table 3: Evaluating classification attribution methods using a synthetic dataset with a
hypothetical model and ground truth attributions. Runtime is the total time required
to compute attributions for the test set.

Attribution Methods Cosine Precision Recall F1 Runtime (secs)
TSHAP window 0.906 0.486 0.975 0.646 5.95

TSHAP ROI 0.900 0.952 0.780 0.851 5.95
WindowSHAP Stationary 0.802 0.614 0.946 0.742 533.99

WindowSHAP Sliding 0.909 0.542 0.975 0.694 9.32
WindowSHAP Dynamic 0.534 0.534 0.694 0.601 55.91

LIMESegment 0.267 0.144 0.378 0.208 488.13
LEFTIST 0.623 0.325 0.838 0.467 0.09

Feature Ablation 0.810 0.611 0.950 0.740 0.39
Shapley Value Sampling 0.801 0.614 0.946 0.742 7.86

Random 0.003 0.191 0.496 0.275 0.0

Table 3 reveals that TSHAP Window, TSHAP ROI, and Sliding Window-
SHAP exhibit the highest cosine similarity to ground truth attributions. TSHAP
ROI attributions demonstrate being more conservative, achieving high precision
but slightly lower recall. Conversely, TSHAP Window, Sliding WindowSHAP,
Feature Ablation, and Shapley Value Sampling show higher recall but lower pre-
cision, indicating a tendency to overemphasize relevant areas (Figure 4). The
similar performance of TSHAP Window and Sliding WindowSHAP stems from
their shared sliding window approach, with differences in the details of calcu-
lation methods. LIME-based methods perform poorly on all metrics for this
dataset. Regarding running time, TSHAP variants are the fastest among SHAP-
based methods. It is important to note that TSHAP calculates both TSHAP
Window and ROI together, thus the running time of each is actually the total
running time for both variants combined. LEFTIST is the overall fastest but
with low scores. Feature Ablation is not only the second fastest method but also
performs relatively well.

Regression Attribution Methods. For the regression problem, we experi-
ment with two different reference values r = 0 and r = 80. For r = 0, the
all-zero sample can be used as the background data because its target value is
also 0. For r = 80, to ensure E(f(Xb)) ≈ 80, we generate background samples
that have the target values in the range of [75, 85].

Table 4 shows the scores of each attribution method for both r = 0 and
r = 80. The results present a similar pattern to the previous experiment (shown
in Table 3) where TSHAP ROI stands out as the most precise method with good
scores overall across the metrics, for either type of reference value.
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Fig. 4: Synthetic data attributions with different classification attribution methods. The
left panel displays the time series, and the right panel shows the attribution profile.
The time series is color-coded: red for positive and blue for negative attributions. For
this input time series, we have two segments with lower frequency which makes it more
likely for the time series to belong to the negative class.

4.4 Real Datasets: Faithfulness Analysis

We evaluate the attribution methods using five binary time series classification
UCR datasets. These datasets are well-studied in this area and were also studied
in [15]. For the classifier we use MiniROCKET [5] due to its efficiency and
effectiveness, and for the background we use the training dataset, as we found
that the other single-time-series options (zero, centroid, balanced centroid) fail
to satisfy the background condition.

Table 5 shows the faithfulness scores (Equation 11) of all the evaluated attri-
bution methods. The average column shows the average faitfulness scores across
the datasets with TSHAP Window as the highest. It is interesting that TSHAP
Window falters with the Wine dataset while TSHAP ROI struggles with the
Chinatown dataset. It should be noted that Chinatown time series are much
shorter than the others (only 24 time steps in total). The methods LEFTIST,
Feature Ablation, Shapley Value Sampling achieve concerning negative faith-
fulness scores (< 0), each on one occasion. Regarding runtime, on these real
datasets, TSHAP Window and TSHAP ROI combined take 7 minutes in total,
slightly less than WindowSHAP Sliding. LEFTIST, WindowSHAP Dynamic,
and Feature Ablation are the only methods that are faster (only 16 seconds
for LEFTIST) but achieve lower faithfulness scores. Stationary WindowSHAP
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Table 4: Evaluating regression attribution methods using a synthetic dataset with a
hypothetical model and ground truth attributions. The reference values of the attribu-
tions are r = 0 and r = 80.

Attribution Methods Cosine Precision Recall F1 Runtime (secs)
r = 0

TSHAP window 0.922 0.525 0.995 0.687 0.06
TSHAP ROI 0.885 1.000 0.750 0.851 0.06

WindowSHAP Stationary 0.792 0.607 0.896 0.723 10.89
WindowSHAP Sliding 0.923 0.585 0.992 0.735 0.91

WindowSHAP Dynamic 0.867 0.799 0.974 0.876 1.1
Feature Ablation 0.653 0.539 0.717 0.613 0.01

Shapley Value Sampling 0.769 0.604 0.892 0.720 0.25
Random 0.015 0.205 0.512 0.293 0.0
r = 80

TSHAP window 0.941 0.508 0.989 0.668 0.55
TSHAP ROI 0.916 0.968 0.810 0.877 0.55

WindowSHAP Stationary 0.840 0.639 0.979 0.771 103.08
WindowSHAP Sliding 0.944 0.568 0.990 0.719 3.05

WindowSHAP Dynamic 0.874 0.748 0.983 0.841 19.98
Feature Ablation 0.844 0.648 0.988 0.780 0.11

Shapley Value Sampling 0.841 0.636 0.975 0.767 2.09
Random -0.019 0.192 0.496 0.276 0.0

Table 5: Faithfulness of classification attribution methods on UCR TSC datasets.
Attribution Methods Coffee Wine BirdChicken ECG200 Chinatown Average

TSHAP Window 0.424 0.059 0.155 0.195 0.230 0.213
TSHAP ROI 0.241 0.338 0.146 0.180 0.008 0.183

WindowSHAP Stationary 0.034 0.206 0.106 0.209 0.210 0.153
WindowSHAP Sliding 0.412 0.068 0.157 0.159 0.174 0.194

WindowSHAP Dynamic 0.156 0.355 0.085 0.067 0.215 0.176
LIMESegment 0.262 0.197 0.110 0.123 0.288 0.196

LEFTIST 0.184 -0.012 0.055 0.190 0.131 0.110
Feature Ablation -0.009 0.107 0.109 0.155 0.254 0.123

Shapley Value Sampling 0.028 -0.037 0.118 0.114 0.234 0.091
Random -0.000 0.154 0.000 -0.003 -0.013 0.027
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is again the slowest method with more than 5 hours of runtime. All methods
surpass the faithfulness of random attributions on average.

5 Conclusion

This paper presents TSHAP, a novel SHAP-based attribution method designed
for interpreting black-box time series classification and regression models. TSHAP
has two distinct variants: TSHAP Window, which calculates time step attribu-
tions based on sliding window Shapley values, and TSHAP ROI, which leverages
sliding window attributions to identify important regions within the time series.
We also address the critical issue of background data selection, providing a the-
oretical and experimental analysis leading to a proposed strategy applicable to
various time series attribution methods that require background data. To our
best knowledge, our paper is the first to study attribution methods for time
series regression problems. For evaluation, we tested our proposed methods on
both synthetic and real-world datasets in comparison with other state-of-the-
art attribution methods. Evaluation on both synthetic and real-world datasets
showcases the robustness of our approach, with TSHAP ROI achieving high pre-
cision on synthetic data. On real datasets, TSHAP Window demonstrates high
overall faithfulness, while TSHAP ROI exhibits less consistent but still strong
performance on various datasets. Both TSHAP variants achieve good trade-offs
regarding computation runtime versus the usefulness of attributions (as mea-
sured using ground truth attributions and faithfulness scores). We acknowledge
that the current scope of regression XAI evaluation is limited to synthetic data
and we do not address the topic of XAI actionability in this paper. These limita-
tions highlight important avenues for future research, including the development
of robust regression XAI evaluation methodologies for real-world data and the
exploration of actionability for XAI in the domain of time series classification
and regression.
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