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Abstract. An important structural feature of a graph is its set of edges,
as it captures the relationships among the nodes (the graph’s topology).
Existing node label noise models like Symmetric Label Noise (SLN) and
Class Conditional Noise (CCN) disregard this important node relation-
ship in graph data; and the Edge-Dependent Noise (EDN) model ad-
dresses this limitation. EDN posits that in real-world scenarios, label
noise may be influenced by the connections between nodes. We explore
three variants of EDN. A crucial notion that relates nodes and edges
in a graph is the degree of a node; we show that in all three variants,
the probability of a node’s label corruption is dependent on its degree.
Additionally, we compare the dependence of these probabilities on node
degree across different variants. We performed experiments on popular
graph datasets using 5 different GNN architectures and 8 noise robust
algorithms for graph data. The results demonstrate that 2 variants of
EDN lead to greater performance degradation in both Graph Neural
Networks (GNNs) and existing noise-robust algorithms, as compared to
traditional node label noise models. We statistically verify this by posing
a suitable hypothesis-testing problem. This emphasizes the importance of
incorporating EDN when evaluating noise robust algorithms for graphs,
to enhance the reliability of graph-based learning in noisy environments.
Link to code: https://github.com/pintu-dot/edn

Keywords: Graph Learning - New Label Noise Model for Graphs -
Noise Robust Node Classification - Structure Aware Noise Model.

1 Introduction

Graph Neural Networks (GNNs) have shown good performance on the graph
node classification task [1,2]. GNNs assume that the available labels for training
data are clean and noise-free, which may not be the case when working with real-
world data [3]. Labels of real-world data are prone to noise, and noise can creep
into data for many reasons, like expensive labelling, lack of expertise, human
weariness, erroneous devices, adversaries changing labels, insufficient information
to provide labels, etc [4,3]. Hence, effectively learning for graph data in the
presence of label noise has gained attention from the community [5-11].

One of the main reasons behind GNN’s superior performance compared to
traditional multilayer perceptron is that GNNs incorporate structural informa-
tion during learning. Structural information is an integral part of graph data.
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However, all current work on noise-robust graph learning uses one of the fol-
lowing: 1. Symmetric Label noise, 2. Pairwise noise / Class-Conditional noise,
3. Instance-Dependent noise. These noise models were originally proposed for
i.i.d. data and not for graph data, and hence, they assume that label noise is
independent of the structure of the node.

Consider a graph where nodes represent users in an online discussion forum.
An edge between two nodes captures the interaction between users on a platform,
such as a reply, comment, or question-answer exchange. Every user is assigned
one of two labels {helpful, not helpful}. In such a graph, label noise can creep
in two scenarios: 1. Two helpful users who interacted with each other disagreed
with each other or, due to some misunderstanding, couldn’t convey their point
of view, and hence, labelled each other as not helpful; 2. Similarly, two unhelpful
users might get incorrectly labelled as helpful because of a rare good discussion or
due to colluding. In such graphs, noise dependent on just one node is not useful;
rather, noise should be passed through edges. The labels of nodes on both sides
of the edge should be changed together. We refer to this approach of adding
noise to node labels as an edge-dependent noise model (EDN). In this work, we
study three variants of edge-dependent noise and their impact on learnability.

The main contributions of the paper are as follows: 1. Propose three variants
of EDN, in which noise is passed through edges. 2. For these noise models, we
derive closed-form expressions for the probabilities of label change in terms of
node degree. 3. We analytically compare these probabilities as a function of node
degree. 4. We perform detailed experiments to check the behaviour of existing
GNN architectures and noise-robust graph learning algorithms in the presence
of EDN, using 5 different GNN architectures and 8 noise-robust graph learning
algorithms. 5. Based on confidence intervals of test accuracies for various noise
models on many datasets, we observe that two variants of EDN at many noise
levels substantially degrade the performance as compared to the existing noise
label models. 6. We pose this as a suitable hypothesis test problem to statistically
verify our observations, and we conclude the same.

2 Related Work - Existing Node Label Noise Models

Let G = (V,€) be a graph, where V denotes the set of vertices and £ CV x V
denotes the set of edges. Each node v; € V, have an associated label y; €
{1,2,--- ,K}. In models for label flipping, we can associate a discrete-time
Markov chain [12] on the state space of labels {1,2,---, K} in which each flip in
the label corresponds to a state transition of the Markov Chain. We give details
of the existing methods for adding noise to node labels; in each case, we identify
the transition probability matrix of the associated Markov chain.

2.1 Symmetric Label Noise

Symmetric Label Noise (SLN) [13, 4] assumes that the label of a node is changed
with some fixed probability p (and hence retained with probability 1 — p). Also,
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the probability of a label being reassigned to each of the other classes is the
same, which is p/(K — 1). Mathematically, if y and 3’ denote true and noisy
label respectively, then P(y’ = nly = m) = %5, where n,m € {1,2,..., K}
and m # n. Transition probability matrix for SLN (Qg,,) is given by

g, P P _p
l—p =5 %= K_1
PP P
ril—-P®= - "=
Qun=| + o oo (1)
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K—1 L—p %=
p . _p_ 1 _
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2.2 Class Conditional Noise

In Class Conditional Noise (CCN) [13, 4], the probability with which the label is
changed depends on both y and y’. The probability of a node of class m being
reassigned to class n is given by ppmn (P(y' = nly = m) = pmn), where m # n.
So, a node with label m is flipped with probability p,, = Zfil,i#m pmi and the
label is retained with the probability 1 — p,,. The transition probability matrix

(Qcen) is given by

1—p P12 P13 e P1K
p21 1—p2  pa3 P2K
Qccn = : ’ -
P(E-1)1 1—pr-1 px-1K
PK1 PK2 .- Pr(k-1) 1—pK

Pairwise Noise: Pairwise Noise (PWN) [13] is a special class of CCN. The
motivation behind Pairwise Noise is that one is more likely to mislabel two
similar classes. For Pairwise Noise py = p2 = ... = pg = p, and the label is
flipped to the next label (with probability p). The transition probability matrix

Qpuwn is given by

1—-p p 0 0
0 1—p p 0
0 I—p p
p 0 0 1—p

Many label noise robust algorithms for graphs have been proposed to tackle
existing node label noise. DGNN [6] employs backward loss correction. PIGNN
[7] leverages pairwise interactions (PI) between nodes for noise-resistant learning.
RNCGLN [8] uses pseudo-labeling within a self-training framework to correct
noisy labels. NRGNN [9] connects unlabeled nodes with high feature similarity
to labelled nodes for better pseudo-labelling. RTGNN [10] enhances information
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flow by bridging labelled and unlabeled nodes while employing dual GNNs for
noise mitigation. CRGNN [11] combines contrastive learning and dynamic cross-
entropy loss to encourage robust feature learning. CGNN [5] integrates graph
contrastive learning and a sample selection strategy based on the homophily
assumption to filter noisy labels. DeGLIF [14] uses the influence function to
identify and relabel noisy nodes in the graph. In our work, we would check how
these algorithms perform in the presence of structure-dependent noise like EDN.

Some works, such as [15,16], introduce structural noise into the graph by
dropping edges. In contrast, our work focuses on node label noise propagated
through the edges, rather than modifying the graph structure itself. Next, [17]
and [18] explore structurally motivated adversarial or noisy label settings on
graphs. However, they primarily focus on label flips and structural changes that
mislead GNN’s training, whereas our EDN model introduces a fundamentally
different approach where label noise arises due to edge connectivity, making it
structure-dependent and degree-sensitive.

3 A Novel Edge-Dependent Noise Model (EDN)

Assume G = (V, ), is an undirected graph, having m nodes. X = {x1,..., 2}
and Y = {y1,...,ym} are the set of feature vectors and the set of true labels
associated with corresponding nodes, respectively. We propose a node-label noise
model for graphs (called edge-dependent noise model (EDN)) where the noisy
labels of connected nodes are correlated as these noisy labels depend on the edge
connecting them. Similar to existing noise models, edge-dependent noise models
inject noise into the graph in two steps: 1. Selecting nodes whose labels should
be changed, 2. Deciding new labels for selected nodes. What differentiates EDN
from existing label noise models is that in EDN, the selection of nodes for label
change depends on their structural information.

3.1 Selecting nodes to change their labels

In the proposed EDN model, we sample each edge with fixed probability p;
these sampled edges are called noisy edges. These noisy edges suggest that the
labels of nodes on both sides of the noisy edge should be changed. For a node
with degree 1, the label is changed if the edge incident to that node is noisy.
For nodes with a degree n > 1, incident edges may have conflicting opinions on
changing the label of the node. Based on how these opinions are aggregated, we
have three variants:

Majority vote (MV): The label of a node v is changed if more than or equal to
half of the edges incident to v are noisy. If the degree of v is deg(v), the probability
of a node getting selected to change its label is hence given by ¢(deg(v), p)

deg(v)

g(deg(v),p) = Y (de‘(]i(v))pi(lp)deg(““. (3)

i ’—degz(v)w
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Veto power (Veto): The label of a node v is changed if at least one of the
incident edges to v is noisy. The probability of the label of a node v with degree
deg(v) getting changed is hence given by r(deg(v), p)

deg(v)

r@mmmzl—(o

Ja-pt =1,

Sequential flipping (seq): In this variant, the label of a node sequentially
evolves. For a node v, we consider all its noisy incident edges. The first noisy
incident edge changes the label to a new class. The second noisy edge changes
the label from this new class to another (with a possibility of reverting to the
original label). This process continues for all noisy edges. The probability with
which a node v with degree deg(v) is flipped depends on how new labels are
assigned when observing a noisy edge and is discussed in Section 3.2.

3.2 Assigning noisy labels to selected nodes

For Majority vote and Veto power, after selecting nodes whose labels are to
be changed, we use SLN and Pairwise noise [13,4] to assign a new label. The
difference between the existing and the EDN variants is that existing models
have the same probability of selecting every node, whereas, in our noise model,
the probability of selecting a node is dependent on the degree of the node. This
is demonstrated by Equation 3,4,5 and 6. Existing noise models have the same
transition probability matrix for all nodes, whereas EDN has different transition
probability matrices for nodes with different degrees. In sequential flipping, the
assignment of a new label due to a noisy edge follows SLN and Pairwise Noise.
Both these sub-variants lead to different probabilities of flipping a node.

Sequential flipping + SLN: Each edge incident to node v is noisy with
probability p. So, due to a single edge, the label of node v is unchanged with
probability 1 — p, and the label changes to a different class with probability p. In
the case of sequential flipping + SLN, when a noisy edge alters the label, the new
label is selected according to the SLN model. This means that each possible class
is equally likely, with a probability of 7£<. The transition probability matrix
associated with the noise caused by a single edge is given by Qg n from Equation
1. If v has degree n, then the transition probability matrix for Sequential flipping
+ SLN is Q%; n (relabelling n times, every time starting with a new label). Qsrn
is a symmetric matrix, using the diagonalization property of symmetric matrix
(Spectral theorem) [19], we derive Q% 5 as follows:

K-—1 1 1 1

P R S

111 1 n| K K K K

n 1 Kp . .

Qsin = 3 + (1 - K_l) :

1 1 1 _1 K—-1 _ 1

Ko, KA

L L. K K K K
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Detailed derivation for Q%, y is available in Appendix A. Using Q% y, for a
node v starting with the true label y, the probability of the label being changed
to a specific class is given by:

deg(v)
s_sc(deg(v),p) = % (1 - (1 - KKPA) ) .

For the node v, when using Sequential flipping + SLN model, the probability
of its label being flipped is (K — 1) x s_sc(n) and is hence given by

o deg(v)
snldeg(v).p) = "1 (1 (- 75) ) . 5)

Sequential flipping + PWN: In sequential flipping with PWN;, label reassign-
ment due to a single edge follows the pairwise noise model. The corresponding
transition probability matrix is given by @pwn from Equation 2. If v has degree
n, then the transition probability matrix for Sequential flipping with the pair-
wise noise is 0}, (relabelling n times, every time starting with a new label).
Observe that in Qpyn, each row is a rightward cyclic shift of the previous row,
which makes it a circulant matrix [20, 19]. We use the eigendecomposition of the
circulant matrix [20,19] to obtain Q},,,. Since Q},, is a product of circulant
matrices, it remains circulant [20, 19], meaning the entire matrix is characterised

by its first row. The first row of Q7. is given by:

pwn

n

QZum,[OvJ] = Z (;) pm(l - p)n—m5m7j mod K-

m=0

Detailed derivation for @y, is in the Appendix B. For the node v, when using
the Sequential flipping + PWN model, the probability of its label being flipped
is

Spun(deg(v),p) = > -

j=1 m=1

RS deg(v) m deg(v)—m
P (1—p) Om—j modk  (6)

In all three variants, the probability of a node’s label changing depends on its
degree. The relationship between node degree and this probability is illustrated in
Fig. 1. We observe that for a fixed p, in the majority vote variant, the probability
q(deg(v), p) decreases with slight fluctuations as the node degree increases. In
the other two variants, both the probabilities r(deg(v), p) and s, (deg(v), p)
monotonically increase and saturate at 1 and % respectively. We summarize
this as Theorem 1, with its proof provided in Appendix C:

Theorem 1. Three variants of EDN satisfy the following properties:

1. For a fixed p, r(deg(v), p) is an increasing function of deg(v). Also, s(deg(v), p)
is an increasing function of deg(v) for p < %
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Fig.1: Node degree vs probability of label change for three variants of EDN.
We use p = 0.25 (the probability of an edge being noisy) and use K = 7 for
sequential flipping.

2. r(deg(v), p) = q(deg(v), p) V deg(v) and fized p.
8. If p < B2 then sqn(deg(v), p) < 2t and sgn(n) = E2L iff p= £

The curve for s,y initially follows veto power and then oscillates to con-
verge to seq+SLN. For deg(v) < K — 1, we have s, (deg(v), p) = r(deg(v), p).
In Figure 1, we observe that sp,, forms a cycle of alternating increasing and
decreasing phases. For a node v;, without loss of generality, assume that its label
y; = 1. If deg(v) = 1, its label gets changed to class 2 with some probability,
but never to any other class. If deg(v) = 2, v, moving from Q. to Q%wn, if the
node has been already assigned label 2, it can not return to the original label
and can either remain in 2 or get reassigned to class 3. If v; was not assigned
label 2, it now has the probability p of getting assigned to class 2. This im-
plies Spwn(2,p) > Spwn(l, p); meaning, sp,, starts with an increasing phase. If
deg(v) = K — 1, then it can be reassigned to any class, and s, is an increasing
function of node degree up to this point. At deg(v) = K, if v; was reassigned
to class K by its first K — 1 edges, then there is a small probability it gets
reassigned to label 1. When this probability exceeds that of class 1 reassigned to
class 2 (which occurs at n = 13 for K = 7), then it starts to decrease. and the
decreasing phase will continue until another cycle is completed again, explaining
the alternating pattern.

Recall Qpr is the transition probability matrix of a discrete-time Markov
chain. This Markov chain is aperiodic and has only one communicating class,
and 7 = [1/K,1/K,...,1/K] is the unique stationary distribution for Qpun.
Hence, Q},,,, converges to a matrix Q*, where every row of @ equals 7 [12]. So,
Spun (deg(v), p) converges to (K — 1) x +, this value is same as the upper bound
for sg,. We summarize this discussion about sp.n as:

Theorem 2. s, (deg(v), p), the probability with which the label of node v is
changed in presence of Sequential flipping+PWN model, satisfies the following:

1. spwn forms a cycle of alternating increasing and decreasing phases. It ini-
tially increases, followed by a period of decrease, and this pattern continues.



8 P. Kumar and N. Hemachandra

2. For any fized p we have Spyn(deg(v), p) = r(deg(v), p), for deg(v) < K — 1.
3. Spun(deg(v), p) converges to =1 as deg(v) — oc.

4 Experiments and Results

4.1 Datasets and their splits

We test the impact of EDN on existing GNNs and Noise-robust algorithms. using
Citeseer [21], Cora [21], and Amazon photo [22], with splits similar to DeGLIF
[14]. Details about dataset statistics are in Table 1. These datasets were selected
as they vary in node count, feature dimensions, and average degree.

Table 1: Dataset Statistics

Dataset # Nodes # Edges  Feature dim # Classes
CiteSeer 3,327 9,104 3,703 6
Cora 2,708 10,556 1,433 7
Amazon Photo 7,650 238,162 745 8

Datasets split details: We use split similar to [14]. For the Cora dataset,
we use 172 nodes per class for training, 500 nodes for validation, and 1000 nodes
for testing. For the Citeseer dataset, we use 250 randomly sampled nodes per
class for training, 500 nodes for validation, and 1000 nodes for testing. For the
Amazon Photo dataset, we use 54 nodes per class for training, 500 nodes in
total for validation, and the rest of the nodes for testing. All datasets have been
fetched from the PyTorch Geometric library, with feature normalisation being
true.

4.2 Injecting EDN noise

The same value of p can lead to different levels of noise using different variants of
EDN noise models. Also, as variants of EDN are degree-dependent, graphs with
different degree distributions can have different noise levels for the same p. Let
d(n) represent the degree distribution of a graph, then the expected noise level
in the graph is given by Z?;almdegree 1(4)d(i) where [ is g, or s. To make a fair
comparison with the existing noise model and among different variants of EDN,
we choose different p for each variant and each dataset so that the expected noise
level in the graph is the same. A ready-to-refer value of p for different datasets,
corresponding to overall noise levels in the graph ranging from 5% to 50% in
increments of 5%, is available in Table 6 of the supplementary material.

4.3 Experimental Setup

We add different types of noise to data, where the noise level is between 5% and
50% in increments of 5%. GCN, GraphSAGE, GAT and Graph Transformer have



EDN: A Novel Edge-Dependent Noise Model for Graph Data 9

been implemented using Pytorch Geometric using GCNConv, SAGEConv, GAT-
Conv and Graph Transformer respectively. For GCN and GraphSAGE we use 1
hidden layer of size 16 and relu activation. For GAT and Graph Transformer,
we use 1 hidden layer with 8 heads of size 8. For GIN we use implementation
by [13]. It is worth mentioning that the comparison is not between GNNs but
between different noise models, so using slightly different architectures for dif-
ferent GNNs strengthens our experiments. We use implementation by [13] for
all noise-robust algorithms except for DeGLIF for, which we use implementation
by [14]. Each experiment is repeated 10 times, with mean + standard deviation
reported. Models are trained on a 24 GB Nvidia RTX 4090 GPU.
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70 e —@- Veto+SLN DRSS -@- Veto+PWN
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Fig.2: GCN accuracy at same noise level but different noise models on Citeseer
dataset.

4.4 Computational Results

In this section, we attempt to empirically understand the impact of EDN on
existing graph learning algorithms. To do so we try to answer following questions:

Q1. How does GCN architecture perform in the presence of EDN?
GCN [23] is one of the widely used GNN architecture, it is also used as a back-
bone for many noise robust algorithms for graph [9,10,14]. We test GCN un-
der different noise variants of EDN, as well as SLN and PWN. Results for the
Citesser dataset are reported in Fig 2. Results for all datasets at 5%, 25%, and
45% noise level is presented in Table 2. Due to the large size of tables and lack
of space, results for all datasets at all noise levels are provided in Tables 7,8,9 in
the supplementary material. GCN performance in the presence of the Majority
vote variant is comparable to existing noise models, SLN and PWN. GCN shows
more degradation in performance when injected with Veto Power and Sequential
flipping variants of EDN as compared to the existing node label noise model.
At low noise levels (less than 15%) the gap is low. However, at higher noise
levels, veto power and sequential flipping gap widen, and they degrade GCN
performance the most.
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Table 2: Comparison of noise model variants across GNN architecture. Reported

values are accuracy=tstd of 10 repetitions.
GNN Noise SIN MV+ Veto+ Seq+ PWN MV+ Veto+ Seq+

Architecture|Level SLN SLN SLN PWN PWN PWN

GON| 5% [73.92+1.1 72.64+0.5 72.27+0.7 72.34+0.6 73.99+1 72.91+£0.6  72.24£0.6  72.23%0.58
25% (65.554+1.74 65.34+1.20 61.64+1.43 61.79+1.42 64.29+1.91 63.93+1.22 58.424+1.76 58.17+2.43
45% |52.47+2.39 52.33+1.55 43.86+2.21 45.57+2.21 47.30+2.34 47.36+1.25 37.93+2.02 38.05+2.56
GIN| 5% |71.92+4.50 69.52+1.93 68.59+2.76 67.76+3.35 67.99+£3.27 68.56+3.01 68.784+2.22 68.58+1.95
25% (60.124+5.71 63.39+3.58 54.51+4.01 55.42+6.26 54.224+9.29 61.47+3.51 49.3447.72 49.98+4.16
45% (42.29+8.80 47.87+7.42 37.98+5.40 39.28+5.53 39.19+3.55 46.07+£6.53 34.25+5.86 33.50+1.65
GraphSAGE| 5% |75.954£0.96 74.964+0.51 74.69+0.49 74.61+0.62 75.97+£0.88 75.07+0.56 74.00+0.53 75.69+1.30
25% (70.96+1.49 70.70+1.07 68.42+1.36 68.99+0.91 68.93+1.92 68.33+1.07 63.27+1.43 65.70+2.16
45% [59.61£1.99 59.97+1.79 52.89+2.11 54.17+£2.08 49.71+2.85 49.19+1.56 41.19+2.29 44.32+4.10
GAT| 5% |76.46+1.53 74.75+£0.67 74.33+0.89 74.36+0.67 76.62+1.49 74.934+0.85 74.39+0.66 76.61+1.39
25% |74.59+1.61 73.06+1.04 71.81+£1.06 72.16+1.39 73.31+£1.84 71.32+1.50 68.13+1.45 71.42+2.64
45% [70.88+1.64 70.45+1.81 66.60+2.33 67.51+£1.87 55.00+3.75 53.93+2.64 43.41+3.18 45.97+6.50
Graph Transformer| 5% |76.2840.86 75.64+0.52 76.2840.50 76.54+0.54 76.10+1.40 75.50+0.14 76.16+0.35 75.5040.95
25% |70.24+1.63 70.36+0.60 68.84+0.68 68.68+0.86 68.86+1.03 67.48+1.12 64.9440.68 65.45+2.00
45% |58.10+£1.24 59.22+1.42 52.384+0.60 53.58+0.94 49.04+2.25 48.94+2.43 43.00+1.01 44.09+2.77
GOCN]| 5% [84.73+£0.94 85.00+0.44 85.19+0.74 85.09+0.73 84.274+0.98 85.36+0.48 85.36+0.50 84.58+0.54
25% |76.464+1.48 77.46+1.99 74.49+2.09 74.65+2.03 71.97+1.77 74.84+2.58 68.85+2.30 76.35+1.44
45% (62.2942.29 63.16+2.94 57.124+2.54 58.06+2.54 50.524+2.76 52.86+3.87 44.28+2.62 50.18+3.92
GIN| 5% (80.95+2.01 81.1140.88 80.45+2.63 82.11+2.60 80.35+2.38 83.34+1.55 80.774+2.21 79.36+1.99
25% |79.02+42.77 77.874+5.65 74.90+2.73 76.57+2.59 73.66+3.74 73.32+4.28 64.84+3.21 67.62+2.51
45% (71.0244.38 75.17+2.36 66.79+9.06 65.95+11.8 48.40+5.01 53.90+4.37 42.55+10.1 48.36+3.33
GraphSAGE| 5% [83.10+1.19 83.3840.68 83.37+1.18 83.41+1.09 82.84+1.31 83.56+0.46 83.22+1.13 84.434+0.81
25% |70.72+£1.85 72.39+2.37 68.83+£1.91 69.02+2.12 67.69+£2.50 69.64+2.76 66.53+1.93 71.642.48
45% |55.27+2.50 53.93+3.23 51.1442.74 51.35+2.62 47.20+3.15 49.40+3.33 46.21+2.12 47.77+5.17
GAT| 5% [79.50+1.80 80.05+1.02 80.39+1.14 80.45+1.20 79.35+1.67 79.43+1.51 79.45+1.37 79.06+1.5
25% |70.33+£2.16 69.58+2.69 70.77+£2.57 70.48+1.44 65.87+£3.48 65.64+2.34 64.80+2.47 66.09+2.37
45% |57.46+3.68 57.14+3.53 55.494+2.94 55.56+3.14 44.76+3.42 46.71+3.98 43.82+3.07 45.25+5.46
Graph Transformer| 5% |84.424+0.84 84.78+0.29 84.70+0.41 84.64+0.67 84.06+0.71 84.70+£0.14 84.96+0.54 84.124+0.99
25% (75.304+0.91 76.56+0.70 77.18+0.67 77.50+0.87 72.124+1.05 72.18+1.08 72.884+0.95 70.33+2.01
45% (61.16+1.75 62.16+1.86 61.32+1.56 60.62+2.15 50.08+2.15 51.324+0.92 51.28+1.44 48.11+2.4
GCN]| 5% |86.78+1.43 83.65+6.28 85.05+4.56 83.55+6.18 86.66+1.46 84.65+£5.59 85.35+4.21 84.85+2.89
25% |83.96+£2.99 78.2849.38 81.87+4.08 80.58+7.92 77.00£5.47 74.15+9.42 70.81+7.69 66.82+8.03
45% |73.45+5.67 75.36+8.82 66.924+11.98 67.85+11.36 44.15+4.85 49.574+7.92 40.74+2.65 40.03+5.61
GIN| 5% |[80.24+4.32 81.324+2.95 67.86+17.91 64.96+15.31 66.24+17.36 78.02+3.71 77.10£5.15 34.24+6.73
25% |50.58+19.81 67.24+16.88 35.04+£2.90 33.62+8.99 50.16+10.96 69.38+14.52 41.784+10.62 33.94+7.74
45% |34.38+7.71 40.28+4.80 24.744+4.46 27.04+7.18 33.52+17.39 48.84+17.31 25.14+3.94 22.58+7.66
GraphSAGE| 5% [90.56+0.86 90.4140.61 90.29+0.82 90.20+0.64 90.39£1.01 90.64+0.50 90.294+0.79 89.93+1.16
25% (81.734+2.29 84.06+1.34 82.15+1.89 82.15+2.09 77.96+2.87 80.25+2.78 77.734+3.13 74.08+4.06
45% (65.88+3.47 68.72+2.34 61.36+4.87 62.66+4.42 50.784+4.01 55.60+4.85 47.78+4.23 43.61+6.1
GAT| 5% |78.204+1.79 79.07+1.89 77.75+1.95 77.29+1.60 77.36+2.45 78.79+1.52 76.30+1.64 76.81+1.79
25% (63.204+3.03 66.08+2.52 63.13+2.32 62.52+2.51 61.62+3.64 63.45+3.42 61.21+1.97 58.14+3.82
45% |47.7943.67 48.55+3.52 46.59+3.19 46.70+3.37 45.01+2.82 47.40+4.53 42.69+3.05 40.29+4.36
Graph Transformer| 5% [85.574+0.83 80.87+8.55 84.13+1.88 84.25+1.36 85.48+0.95 85.80+0.72 84.324+1.22 84.94+0.61
25% |74.34+3.35 76.04+2.34 71.73+£2.25 72.54+3.45 71.27+4.41 73.05+2.94 72.284+1.72 69.84+1.86
45% |58.77+2.13 58.33+4.13 57.5442.01 57.76+1.11 54.38+2.85 49.03+6.71 54.25+3.26 49.84+4.64
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Q2. How do other GNN architectures perform in the presence of
EDN? Maybe GCN is not robust enough for EDN, what about other GNN ar-
chitectures, we test common GNN architectures GIN[24], GraphSage[25], GAT|[26],
and Graph Transformer|[27]. Result for Citeseer with 40% noise is pictorially re-
ported in Figure 3. For all datasets at 5%, 25%, and 45% noise levels, result is
presented in Table 2. Detailed results for all datasets at all noise levels are in
Tables 7,8,9. We observe that, similar to GCN, other GNN architectures’ perfor-
mance is also degraded more in the presence of Veto power and the Sequential
flipping variant of EDN as compared to the existing noise model and majority
vote variant.

Q3. How does the existing label noise robust algorithm perform in
the presence of EDN? Next, we evaluate noise-robust algorithms DGNN [6],
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Different GNN architectures performance on Citeseer dataset (at 40% Noise) across noise models
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GCN GIN GraphSAGE GAT Graph Transformer
GNN Architectures

Fig. 3: Comparison of noise model variants across GNN architectures. A cluster

is for an architecture, and coloured bars show the accuracy of the corresponding
noise type.

. SLN Veto+SLN = PWN m Veto+PWN
MV+SLN N Seq+SLN MV+PWN Seq+PWN

Performance of different label noise robust algirithm on Citeseer dataset (at 40% Noise) across noise models
0.
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Noise Robust Algorithms for Graphs

Accuracy

GCN DGNN PIGNI

Fig. 4: Comparison of noise model variants across graph label noise-robust algo-
rithms. A cluster is for an algorithm, and coloured bars show the accuracy of a
noise type.

PIGNN [7], RNCGLN [8], NRGNN [9], RTGNN [10], CRGNN [11], CGNN [5],
and DeGLIF [14] under different noise variants of EDN, as well as SLN and CCN.
Graphical representation of the result for the Citeseer dataset with 40% noise is
in Figure 4. For all datasets at 5%, 25%, and 45% noise level, result is presented
in Tables 3 and 4. Detailed results for all datasets are in Tables 10,11,12 in the
supplementary material. At low noise levels, these algorithms give comparable
results across all noise models. At higher noise levels, most algorithms (Fig. 4)
show trends similar to GCN. Performance under the majority vote variant is
comparable to or better than SLN or CCN. However, under the Veto Power and
sequential variants, almost all algorithms struggle to learn as robustly as they
do with SLN or CCN.
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The Majority Vote (MV) algorithm penalizes low-degree nodes, making its
performance decline similar to SLN or PW. On the other hand, Veto power and
Sequential flipping have higher noise levels for higher degrees (Fig 3). Variants
of EDN leading to a greater performance drop suggest that the structure of
nodes plays a critical role in how noise impacts performance, making such EDN
variants valuable for robust evaluations.

Table 3: Comparison of noise model variants across graph label noise robust
algorithms for Citeseer and Cora datasets. Reported values are accuracy+std of
10 repetitions.

Noise
Robust
Methods

Noise
Level

SLN

MV+
SLN

Veto+ Seq+

SLN SLN PWN

MV+
PWN

Veto+
PWN

Seq+
PWN

DGNN

PIGNN

RNCGLN

RTGNN

NRGNN

THmEH®nEs=Q

CRGNN

CGNN

DeGLIF

5%
25%
45%

5%
25%
45%

5%
25%

66.461+2.84
53.07+£4.92
41.8916.73
76.58+2.04
71.61£3.67
60.79111.05
72.15£3.13
65.0914.12
51.68+5.01
73.98+4.38
72.47£1.78
70.25£1.97
75.76£0.99
73.78+1.02
70.80£2.43
76.34£2.41
73.22£1.63
64.8444.24
77.80£0.83
69.86+4.46
58.6248.03
77.58+1.10
76.10£1.21
70.58+1.44

65.154+2.37

62.17£2.41 60.2843.58 64.0442.22

51.18410.06 45.02+£6.99 44.7046.52 49.78+5.92

43.71+4.72
72.83+3.60
69.6243.46
56.1849.03
69.00+3.88
62.5142.37
51.01£3.35
74.31£1.04
72.81£1.55
71.09£2.30
74.19£1.47
72.68+2.15
70.73£5.18
74.74£1.86
70.35+6.12
64.1618.81
74.20£1.74
70.54+3.82

29.4846.39 27.27£9.29 32.62+6.84
71.34£5.36 71.614£5.36 74.0242.20
66.791+6.75 66.11£8.15 66.19+5.57
56.3243.70 58.49+£7.80 44.47£7.21
68.33£1.98 67.5441.51 69.8643.23
64.761+4.86 62.41+£4.41 58.2242.80
44.2444.52 45.94+4.38 41.87+2.96
74.26+1.53 73.95+1.35 74.18+0.80
72.8241.97 71.95£3.23 65.8742.81
64.59£5.95 69.164+2.81 42.614+4.55
74.2241.19 74.14+£1.15 71.69£3.75
70.86+4.00 70.40+4.18 67.064-2.90
65.174+6.89 64.09+8.24 46.98+3.99
74.64+1.79 74.24+£2.41 75.09£1.07
71.21£3.16 72.50£1.97 65.984+4.25
57.43+7.86 63.37£5.93 45.19+3.63
73.69£1.85 73.11£3.40 72.67+4.49
69.04+£5.15 70.0944.03 61.6349.43

55.96411.66 50.57£11.89 50.624:10.95 44.70£6.39

77.36+1.24
76.24+1.48
72.38£2.06

77.64+£1.71 77.50£1.80 77.924+1.24
75.864+2.28 76.04+£1.96 74.86+2.20
71.1842.99 71.9842.90 59.4843.76

66.06+1.90
53.6246.91
44.714+5.86
73.60£1.74
68.1144.49
49.97£7.33
68.05+2.46
61.01+2.82
46.814+3.73
74.07£1.15
71.07£2.65
53.90£3.99
73.56+2.35
72.08+2.89
55.79£5.34
74.78%2.31
70.15£1.75
52.46+3.34
73.5142.24
67.52+6.32
50.49£6.26
77.34+1.41
75.9442.44
62.0243.25

61.92+8.79
46.2446.07
32.83+4.41
71.63%5.38
62.7944.89
38.14+4.95
68.87£2.75
56.5042.01
37.95+3.20
74.1240.97
66.0942.46
45.3613.73
74.53+1.63
66.07+6.16
40.3045.00
74.30£1.48
58.2949.09
40.4443.00
74.21£1.59
60.02£7.17
41.45%3.50
77.64+1.42
73.40£1.72
4745.34

58.12£13.30
42.284+12.04
34.20£7.13
73.14£2.17
63.6247.72
44.4849.20
72.08+3.06
58.8843.38
40.724+1.63
75.0841.32
70.2243.38
54.05+3.09
76.58+3.30
69.92+1.67
49.60+10.83
74.8843.26
65.34+3.45
42.56+6.28
76.60+4.10
63.08+9.39
46.0244.30
77.74£1.2
74.442.95
52.4848.28

DGNN

PIGNN
RNCGLN
C RTGNN
(6]
R
A NRGNN
CRGNN

CGNN

DeGLIF

78.32+4.81
74.90+5.87

82.68+2.81
79.38+2.39

79.80£1.65 78.084+4.58 74.664+9.15
65.20411.22 65.38+13.62 61.78+9.81

62.34412.99 60.08£15.94 40.264+8.56 40.10£8.99 46.64411.84

80.19+3.16
79.84£2.30
75.68+2.69
83.8245.00
80.2645.05
56.52+£5.79
73.54£2.02
75.67£3.00
66.44+7.61
75.13£3.77
75.03+4.14
71.63£7.77
84.10+1.86
78.25+1.88

81.48+2.16
80.1142.09
75.74£2.92
84.0644.05
80.2443.99
61.2246.57
74.42£2.12
72.20+£3.70
64.95+8.76
75.47£1.73
73.52+1.88
65.5319.80
83.9911.48
76.40£2.57

81.81£2.22 81.714£2.15 80.0543.50
80.6642.37 78.41+£5.17 76.54+3.43
74.95+6.39 74.61+5.72 49.64+10.92
85.3242.00 87.04+2.01 83.78+2.71
71.5446.55 70.50£4.53 71.94£5.37
51.68+5.66 55.4045.21 52.4048.32
74.644+1.78 75.04£1.70 75.2943.09
74.12£3.52 73.1645.07 70.4443.29
68.274+6.98 71.45+5.01 57.38+6.77
75.6542.62 73.19£2.98 75.40%2.21
75.46+2.96 75.05+1.90 69.8947.82
69.96+7.19 70.07£5.05 50.58+13.34
84.184+1.72 84.36£1.53 84.26%1.64
76.43+£5.53 77.5842.64 75.7142.56

65.02410.42 60.58£12.98 62.984+6.41 60.63£7.09 48.3249.40

83.70+3.67
79.46+3.45
67.761+6.19

82.43+4.47
74.93£5.98
63.574+9.94

83.15+£3.11 82.8143.26 83.57+2.19
77.06+4.52 76.29+4.45 75.82+3.25
65.63413.02 65.15£13.00 51.20£7.78

88.794£2.60 88.774+2.79 87.0446.67
87.33+2.74 85.71£6.37 86.1743.31

89.41£1.99
85.68+5.04

88.2042.12
86.63+1.84

84.854+2.21 83.604+2.00 75.33+£7.08 78.58+6.30 60.11+3.78

82.50+0.95
77.36+3.91
45.024+11.65
81.68+1.97
75.71£3.57
46.8919.64
82.08+3.42
77.00£9.12
63.90£8.12
73.914+2.63
62.89+6.02
51.81+3.87
74.81£1.82
64.88+7.89
40.3449.91
84.28+0.92
74.05£2.41
49.274+6.13
83.15+2.76
70.3449.60
47.451+6.24
88.73+2.32
87.60+2.01
63.5046.69

78.38+7.58
53.284+12.29
30.9446.26
81.79£1.88
72.8543.56
47.6017.82
88.3242.02
64.98+3.93
42.584+2.93
74.284+1.90
55.39+9.03
40.514+8.34
76.1242.36
64.97+6.98
40.91410.40
83.70£1.58
67.48+4.64
46.61+7.83
78.94+11.48
70.5443.38
46.3948.02
88.86+2.41
73.27£16.10
44.9442.33

79.18%1.75
66.54+7.27
52.36+8.54
81.48+2.84
72.87£8.57
57.05£10.22
81.3840.61
70.60£1.39
49.7240.79
73.954+1.58
68.75+4.56
42.7747.32
74.9942.20
65.47+7.14
49.96+6.07
82.16+4.84
69.94+6.77
44.2247.37
83.27+2.92
71.374£10.88
47.561+10.42
84.46+0.8
80.74%1.15
61.246.07




EDN: A Novel Edge-Dependent Noise Model for Graph Data 13

Table 4: Comparison of noise model variants across noise robust algorithms for
graphs for the Amazon Photo dataset. Reported values are accuracy=+std of 10

repetitions.
Noise
~. |Noise MV+ Veto- Seq-+ , MV+ Veto- Seq-+
Nl};i’l‘(‘)js Level PN SLN SLN SLN PWN PWN PWN PWN

DGNN| 5% |78.32+4.81 82.68+2.81 79.80+1.65 78.08+£4.58 74.66+9.15 82.50+0.95 78.38+7.58 61.444+27.08
25% |74.90+£5.87 79.38+2.39 65.204+11.22 65.38+13.62 61.78+9.81 77.36+£3.91 53.28+12.29 55.50+5.54
45% (62.34+£12.99 60.08+15.94 40.264+8.56 40.10+8.99 46.64+11.84 45.02411.65 30.94+6.26 35.96+4.80
PIGNN| 5% (88.9+0.4 89.5640.58 90.7240.31 92.42+0.59 89.7441.26 88.02+£0.96 89.9640.58 90.06+0.88
25% (86.8+3.4 88.9641.72 90.304+0.65 90.52£0.50 85.2242.21 87.52£2.15 74.564+2.17 82.10£2.06

A 45% (82.24+4.2 87.22£2.37 79.86+£7.22 80.64+3.36 60.44+8.51 62.3849.04 42.86+6.44 63.52£2.81
M RNCGLN| 5% |(83.8245.00 84.06+4.05 85.32+2.00 87.04+2.01 83.7842.71 82.08+3.42 88.32+2.02 84.48+3.53
A 25% |80.26+£5.05 80.24+3.99 71.544+6.55 70.50+4.53 71.94+5.37 77.00+9.12 64.98+3.93 69.96+6.36
Z 45% (56.52+5.79 61.2246.57 51.684+5.66 55.40+5.21 52.40+8.32 63.90+8.12 42.58+2.93 48.34+1.06
O RTGNN| 5% (80.8+5.3 81.93+£2.17 81.46+2.44 84.14+2.19 82.24+0.86 83.45+1.10 81.95+1.42 82.04£1.53
N 25% (82.9+4.9 82.6343.85 82.931+3.32 81.96£2.17 83.174£3.79 84.88+£3.15 69.78+3.62 76.19£6.53

45% (86+1.3 84.98+1.62 75.71£7.21 74.46+5.80 60.86+£8.45 58.031+12.32 47.17+8.88 60.56+3.57
NRGNN| 5% |69+8 87.524+0.90 87.3441.68 88.40+2.77 89.74+1.26 87.08+1.67 86.56+1.54 85.90+2.81
25% |55.145.4 86.92+2.84 85.92+0.64 86.08+0.90 85.224+2.21 85.5242.32 72.50+4.41 81.24+5.63
45% |54.546.2 86.704+1.72 73.784+4.98 81.42£2.51 60.4448.51 66.20£8.31 49.90+3.87 58.78+1.89
CRGNN| 5% [59.04+12.73 44.60+£12.81 54.28+14.68 54.52414.41 54.80+12.30 52.82+£12.77 47.36+15.24 37.54+46.21
25% |45.02+10.86 37.82+11.13 35.76+11.64 35.224+14.65 47.68+£20.70 31.22+7.03 41.32+7.76 32.74+39.74
45% [29.48+15.05 31.20£5.21 23.12+5.72 18.82+4.97 33.14+13.04 37.74+8.31 27.42+4.28 19.78+21.92
CGNN| 5% [39.084+28.12 28.70+12.19 23.32+6.22 33.60+21.41 33.824+19.18 25.104+7.71 32.08+11.53 56.84+25.81
25% |34.08+23.35 22.70+8.20 24.30+5.93 25.88+24.09 31.26+18.21 22.48+3.59 29.08+7.08 47.86414.05
45% [16.624+9.35 17.40£9.27 20.84+7.90 22.96+11.08 22.74+12.74 24.4447.80 25.78+7.39 36.52+9.30
DeGLIF| 5% |88.79+2.60 88.7742.79 87.0446.67 89.41+1.99 88.20+2.12 88.73+2.32 88.86+2.41 89.09+2.13
25% |87.33+£2.74 85.71+6.37 86.17+3.31 85.68+5.04 86.63+1.84 87.60+2.01 73.27+16.10 79.08+4.45
45% [84.85+2.21 83.60+£2.00 75.33+7.08 78.58+6.30 60.11+3.78 63.50+£6.69 44.94+2.33 52.92+11.73

oHoxZ W

4.5 Hypothesis Testing

All experiments to check the impact of EDN on GNN architectures and noise
robust algorithms for graphs are repeated 10 times. For a particular noise level,
Let {z5,... x5y}, denote accuracy values obtained by GNN when noise is injected
using SLN. Similarly let {zY{,..., 27} denote accuracy values obtained by GNN
when noise is injected using Veto Power + SLN model. We want to use the
theory of hypothesis testing to check if some of the variant of EDN really lead
to more degradation in performance as compared to existing noise models. To
do so, let, d; = x5 — x?. Then d = 7° — zV. We assume that d; are sampled from
a normal distribution with an unknown mean uy and unknown variance 03. We
define hypothesis test as follows [28, 29]:

Null Hypothesis Hy : g < 0
Alternate Hypothesis Hy : g > 0

We would like to mention that the normal distribution has a domain of
(=00, 00), but the possible values of d; are restricted to [—100, 100]. Empirically,
almost all observed values of d; lie within [—10,10] and exhibit a small stan-
dard deviation. As a result, the probability of a well-fitted normal distribution
assigning values beyond [—100, 100] is extremely low. Therefore, it is reasonable
to assume that d; are sampled from a normal distribution. The estimate for a
mean of d; is given by d;. The pooled estimator S for variance of d; is given by
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(assuming that population variance of SLN and Veto+SLN are the same)

(n—1)S%2+ (n—1)52  S?+ 52
on—2 o 2

53 =

where, 5% and S2 are sample variance for SLN and Veto+SLN varaints respec-
tively. Then, the test statistic is given by

d—0 Vnd
T = =
VSiGi+n)  VSEESE

The significance level o test is to reject Hy if T > tq 2n—2; not reject Hy,
otherwise. Here t, 2,—2 denotes t-distribution with degree of freedom 2n — 2.
Significance level & means that the probability of Hj getting rejected when it is
actually true is never greater than «. In our experiment, we expect the data to
support the alternative hypothesis Hi, but do not want to make the assertion
unless the data really gives convincing support. So, we have set up the test so
that the alternate hypothesis is the one that we expect data to support and
we hope to prove. Alternate hypothesis in such setup is also called the research
hypothesis. By choosing a small « as the significance level, we minimize the risk
of incorrectly concluding that the data supports the research hypothesis when
it is actually false [29]. Common choices for a are 0.1, 0.05, and 0.005; here, we
choose a = 0.05.

Ilustrative examples (A) Let us look at a few examples. For Citeseer data
set, GCN architecture in presence of 5% noise, we have 7° = 73.92, ¥ = 72.27,

Sy = 1.1, S, = 0.7 (from Table 2), and thus, T = % = 4.00184.
For significance level av = 0.05, the value of ¢4,18 = 1.734. As, T > tg.05,18 S0 We
reject Hy. It means for the Citeseer dataset at 5% noise, GCN performs worse
in the presence of Veto + SLN as compared to SLN, and the probability of
incorrectly concluding this is at most 5%. In fact, in this case, T > t9.0005,18 =
3.921643, so the probability of incorrectly concluding rejection of Hy is at most
0.05%.

(B) For Citeseer data set, GIN architecture in presence of 45% noise, we have
x® =42.29, 7V = 37.98, S; = 8.8, S, = 5.4 (from Table 2), and hence, T' = 1.32.
This means, T' < £g.05,18 and we accept Hp.

Analysis of Hypothesis Tests: We perform hypothesis testing for all datasets,
for all GNN architectures and all noise robust algorithms and the results are
presented in Table 5. We divide noise levels into three subclass, Low (5% — 15%
noise levels), Medium (20%—35% noise levels), and High (40%—50% noise levels).
Overall represents aggregate across all noise levels. We revisit questions asked
in Section 4.4 through the lens of hypothesis testing. For GCN architectures,
we have 10 noise levels x 3 datasets x 2 sub-variants (SLN and PWN) = 60
hypothesis tests. Out of 60, we were able to reject 32 null hypotheses with
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a = 0.05. As in (B), accepting Hy at a low significance level does not always
mean that the null hypothesis is true, but it means that we are unable to reject
it with high confidence. In example (B) clearly d > 0, but as the variances
are high, we are not confident if d > 0 is due to a change in noise model or
due to inherent randomness in the learning process (randomness in training set
sampling, stochastic gradient descent, etc). So, when we are able to reject Hy,
we can say with high confidence that the decrease in performance is due to a

change in the noise model (for example, a change from SLN to Veto+SLN).

Table 5: Summary of all Hypothesis Tests: The fraction of cases in which we
rejected the null hypothesis at significance level « = 0.05. Even algorithms de-
signed to handle graph label noise experience greater performance degradation
due to EDN compared to the existing noise models. We can say this with high
confidence for 34% cases under Veto Power and 22% cases under Sequential
Flipping. The same is true for 41% cases for GNN architectures.

. . Existing
Noise Noise GCN GNN. Noise Robust
Model Level Architectures .

Algorithms
Low 6/18 = 0.33 24/90 ~ 0.27  26/144 ~ 0.18
Veto Medium|10/24 ~ 0.42 45/120 ~ 0.38 54/192 = 0.28

Power  |High |16/18 ~ 0.89 55/90 ~ 0.61  85/144 ~ 0.59
Overall [32/60 ~ 0.53 124/300 ~ 0.41 165/480 ~ 0.34
Low 7/18 2 0.38 23/90 =~ 0.26  26/144 ~ 0.18
Sequential| Medium|9/24 ~ 0.38  41/120 ~ 0.34 41/192 ~ 0.21
Flipping |High |14/18 ~ 0.78 59/90 ~ 0.66  39/144 ~ 0.27
Overall {30/60 ~ 0.5 123/300 ~ 0.41 106/480 ~ 0.22

From Table 5, we observe that Veto Power and Sequential Flipping cause
greater performance degradation than traditional noise models across different
noise levels. GCN is the most affected by EDN, while other GNN architectures
show slightly more robustness. However, none of the GNN architecture performs
similarly to the existing noise model and EDN across noise levels. Existing noise
robust algorithms also fail to completely tackle two variants of EDN. Overall, at
a = 0.05 significance level, in 34% cases, Veto power degrades the performance
of noise robust algorithm more as compared to existing noise models; sequential
flipping degrades more performance in 22% of cases. This number increases to
41% for GNN architectures and increases to 50% for GCN. Also, we observe that
the impact of EDN becomes prominent with an increase in noise levels.

5 Conclusion

In this work, we introduce a novel noise model for graph data called Edge-
Dependent Noise (EDN). Unlike existing noise models used for graph data that
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were originally designed for i.i.d. data, EDN captures the impact of connec-
tions among nodes, on node label noise. We propose three variants of EDN -
Majority Vote, Veto Power, and Sequential Flipping. In all three variants, the
probability of a node’s label being flipped is directly determined by its degree,
making implementation feasible even for large graphs. This degree-dependency
is a distinguishing feature of EDN. We theoretically compare the probabilities
of label flipping as a function of the node degree for various EDN variants that
we propose. Experiments followed by hypothesis testing on results reveal that
EDN, especially the Veto power and Sequential flipping variants, leads to more
significant performance degradation compared to existing noise models like SLN
and CCN. This highlights the critical role of node in understanding the impact
of noise on GNN performance, making EDN a valuable tool for robust evalua-
tions of GNNs. This underscores the need for further research into developing
noise-robust algorithms specifically designed to handle the complexities of edge-
dependent noise in graph data. As the differences in accuracies that we consider
are in the interval [—100, 100], one can pursue the hypothesis testing approach in
a more principled way without resorting to normal approximations or assuming
equal population variance. Our hypothesis testing framework is Berhens-Fisher
problem and currently has no completely satisfactory solution (Sec. 8.4.3 of [28]).
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