
The Vanishing Empirical Variance
in Randomly Initialized Deep ReLU Networks

Michał Grzejdziak-Zdziarski1, David M.J. Tax2, and Marco Loog3

1 Nomagic, Warsaw, Poland (�)
2 Delft University of Technology, Delft, The Netherlands

3 Radboud University, Nijmegen, The Netherlands

Abstract. Neural networks are typically initialized such that the hidden
pre-activations’ theoretical variance remains constant to avoid the vanish-
ing and exploding gradient problem. This condition is necessary to train
very deep networks, but numerous analyses show this to be insufficient.
We explain this behavior by analyzing the empirical variance, which is
more meaningful in the practical setting that deals with data sets of finite
size. We demonstrate its discrepancy with the theoretical variance, which
grows with depth. We study the output distribution of neural networks
at initialization and find that its kurtosis grows to infinity with increas-
ing depth, even if the theoretical variance stays constant. As a result,
the empirical variance vanishes: its asymptotic distribution converges in
probability to zero. Our analysis focuses on fully connected ReLU net-
works with He-initialization, but we hypothesize that many more random
weight initialization methods suffer from vanishing or exploding empirical
variance. We support this hypothesis experimentally and demonstrate
the failure of state-of-the-art random initialization methods in very deep
regimes.

Keywords: vanishing gradient · empirical variance · kurtosis · ReLU.

1 Introduction

The main heuristic for deriving initialization methods for deep neural networks
is to keep the theoretical variance of the output or gradient distribution constant
over all hidden layers. The idea is that this ensures proper propagation of the
input signal through the network and therefore mitigates the vanishing gradient
problem [13,3]. This approach has been used to derive two initialization methods:
so-called Glorot [8] and He-initialization [11]. However, these methods are still
not sufficient to train arbitrarily deep networks. Other statistical properties have
been shown to explode or vanish even under constant variance [9,10,5,24], while
in the meantime, still no initialization method has been demonstrated to work
for very deep networks.

Here, we take another look at the consequences of keeping the theoretical
variance constant and analyze distributional properties that go beyond this
second central moment. Specifically, with a focus on He-initialization [11], we
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analyze the dynamics of the kurtosis, the fourth standardized moment, as a
signal is propagated through a neural network that is He-initialized. Under mild
assumptions, we prove that the kurtosis of the output distribution grows to
infinity with increasing depth. As we will show, the surprising effect of this is that
the empirical variance has to go to zero (in probability), despite the constant
theoretical variance. Consequently, almost all outputs are mapped to zero by an
arbitrarily deep network. We call this problem the vanishing empirical variance.

Our analysis suggests that the problem of vanishing empirical variance may
concern many more random initialization schemes. We demonstrate this empiri-
cally for state-of-the-art random initialization methods for fully connected ReLU
networks. We also show that ZerO [27], which is a deterministic method that
keeps empirical variance constant, can train very deep and narrow networks, a
fact not realized by its authors.

In Section 2, we recall the literature related to our work. In Section 3, we define
the basic setup we consider, nuancing the original analysis of He-initialization from
[11]. In Section 4, we analyze this setting and come to our main theoretical result.
In Section 5, we show its practical consequences for the empirical variance of the
output distribution at initialization. In Section 6, we present our experimental
results. Finally, in Section 7, we discuss how our analysis extends to other types
of layers and other activation functions.

2 Related work

The idea to initialize the weights by sampling them i.i.d. from a zero-mean
symmetric distribution such that the variance is kept constant over all layers is
known at least since the work by [4]. It was popularized as a “trick” by [19]. [8]
extended it to balance the need to keep the output variance and the gradient
variance constant, while [11] analyzed the specific case of ReLU activation. Further
extensions of this work to the specific case of highly popular ResNets [12] have
been given by [26] and [1]. Other approaches to random weight initialization
include orthogonal initialization [22], delta-orthogonal initialization [25], data-
dependent LSUV [20] or MetaInit initialization [6], and GSM initialization [5].
Another approach is to initialize the weights deterministically. Examples are
identity initialization [2] and ZerO initialization [27]. Although our focus is
He-initialization [11], we hypothesize that our claims extend to other random
initialization methods, which we corroborate in our experiments.

Various results indicate that controlling the variance is not sufficient to
mitigate gradient problems. [9] showed that the empirical variance of gradients
grows exponentially with increasing depth, while [10] and [5] showed the same
for the empirical variance of the lengths of activations and pre-activations,
respectively. [24] demonstrated that with increasing depth, the output distribution
has increasingly heavy tails. We add to this line of research by studying kurtosis
of the output distribution, which directly relates to its empirical variance. Our
analysis shows that even if we keep the theoretical variance constant, the empirical
variance will tend to zero.
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Proper initialization of neural networks is only a prerequisite to ensure fast
convergence to a good solution of the given optimization problem. [23] showed
that for standard random weight initialization methods, the number of iterations
required to converge grows exponentially in depth. [7] reached a similar conclusion,
while [15] showed that the convergence speed is independent of depth for the
case of orthogonal initialization. However, our work questions the possibility of
convergence of very deep randomly initialized networks in practice, even with
initialization schemes designed to overcome the problem of large depth, such as
orthogonal initialization [22] or GSM initialization [5].

3 Preliminaries

We consider fully connected networks with leaky ReLU nonlinearities. For an
input x ∈ Rw0 , and a neural network with depth d ∈ N, widths (wl)

d
l=0 ⊂ N, and

negative slope a ∈ R, the output y(l) ∈ Rwl of the lth layer is recursively defined
as4

y(0) = x, y(l) = W(l)ϕa(y(l−1))

where for all l = 1, ..., d W(l) ∈ Rwl×wl−1 is a weight matrix and ϕa : R → R is
leaky ReLU with the negative slope parameter a ∈ R, applied entry-wise

ϕa(x) =

{
ax, if x < 0,

x, otherwise.

We treat x and (W(l))dl=1 as random variables and analyze distributional proper-
ties of y(d) with increasing d. We study tHe-initialization method by [11] which
takes the entries of each weight matrix W(l) to be i.i.d. symmetric variables with
variance 2

wl(a2+1) . This method preserves several distributional properties of the
input random vectors.

Definition 1 (He random vector). We say that a random vector x ∈ Rw is a
He random vector if all variables in x have mean zero, symmetric5, uncorrelated,
and homoscedastic with some variance σ2

x.

Proposition 1 (He-initialization). If for all l = 1, ..., d weight matrices W(l)

are i.i.d., zero-mean, and symmetric with variance equal to 2
wl(a2+1) , then for an

input He random vector x with variance σ2
x the output random vector y(d) is a

He random vector with variance σ2
x.

4 Throughout the paper, for vectors and matrices we use upper indices to indicate the
layer, and lower indices to refer to entries. For scalars, we use the lower indices to
indicate the layer. For the function ϕa we use the lower index to indicate the negative
slope parameter a.

5 By a symmetric random variable we mean a random variable with a probability
distribution symmetric around its mean.
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A proof for Proposition 1 has been given by [11] under the stronger assumption
of preservation of independence of vector entries. For simplification, [11] assumed
that independence is preserved through the network, but for our analysis it is
important to realize that what actually is preserved is uncorrelatedness. We
provide a proof with this modification in the supplementary material.

One may ask how to make sure that the properties of He random vector
are satisfied at the input. The Proposition 2 below shows that if we include
an additional weight matrix before the first activation, it transforms any input
random vector to a He random vector.

Proposition 2 (Any random vector can be transformed to a He random
vector). For any finite-variance random vector x ∈ Rw, if W ∈ Rw×w is a
random matrix of i.i.d. zero-mean, symmetric variables with finite variance such
that W and x are mutually independent, then z = Wx is a He random vector
with some variance σ2

z .

Proof. Consider a specific entry zi in z, zi =
w∑

k=1

Wikxk. For any i, k, Wik is

symmetric and zero-mean, and so must be Wikxk. Because zi is a sum of zero-
mean and symmetric random variables, it is zero-mean and symmetric. All entries
of z have the same variance because it is expressed with the same formula, so
they are homoscedastic with some variance σ2

z . Lastly, we will show that zi, zj
are uncorrelated for any i, j, i ̸= j. Consider covariance of two entries zi, zj

Cov[zi, zj ] = E[zizj ]− E[zi]E[zj ].

Because E[zi] is equal to zero, it simplifies to

Cov[zi, zj ] = E[zizj ] = E[(
w∑

k=1

Wikxk)(

w∑
k=1

Wjkxk)]

= E[
w∑

k1=1

w∑
k2=1

Wik1
xk1

Wjk2
xk2

] =

w∑
k1=1

w∑
k2=1

E[Wik1
]E[xk1

Wjk2
xk2

] = 0.

We will assume that inputs are always He random vector and that networks
are initialized according to Proposition 1. Effectively, the outputs for each hidden
layer will be He random vectors too.

4 Theory

We present our main theoretical results. We derive the relation between input
and output kurtosis in a neural network (Proposition 3) and prove that for
bounded-width networks, it goes to infinity with increasing depth (Theorem 1).
Here, kurtosis of a random variable x is defined as Kurt[x] = E[ (x−E[x])4

V ar[x]2 ]. We
will analyze the case with E[x] = 0 which simplifies it to Kurt[x] = 1

V ar[x]2E[x
4].
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First, we prove Proposition 3 in which we will derive the exact recursive
formula for the dynamics of kurtosis over consecutive layers. The derived formula
tracks two statistical properties in a linear matrix difference equation: kurtosis
and covariance of squared outputs. We take the mild assumption, which is satisfied
with Proposition 2 that the covariance of squared outputs is equal for any two
outputs.

In the proof of Proposition 3, we will use two lemmas 1 and 2 that are given
first.

Lemma 1. Let x be a zero-mean, symmetric random variable with V ar[x] = σ2
x

and Kurt[x] = κx. Then E[ϕ4
a(x)] =

(a4+1)
2 σ4

xκx.

Proof.

E[ϕ4
a(x)] =

∞∫
−∞

ϕ4
a(x)p(x)dx =

0∫
−∞

a4x4p(x)dx+

∞∫
0

x4p(x)dx

=
1

2
a4

∞∫
−∞

x4p(x)dx+
1

2

∞∫
−∞

x4p(x)dx =
a4 + 1

2
E[x4] =

a4 + 1

2
σ4
xκx.

Lemma 2. Let x, y be identically distributed, uncorrelated, zero-mean, symmetric
random variables with variances σ2

x, kurtoses κx and Cov[x2, y2] = c. Then
E[ϕ2

a(x)ϕ
2
a(y)] =

(a2+1)2

4 (σ4
x + c).

Proof.

E[ϕ2
a(x)ϕ

2
a(y)] =

∫
R2

ϕ2
a(x)ϕ

2
a(y)p(x, y)dxdy

=

∫
R2

+

x2y2p(x, y)dxdy + 2a2
∫

R+×R−

x2y2p(x, y)dxdy

+ a4
∫
R2

−

x2y2p(x, y)dxdy =
1

4
(a2 + 1)2E[x2y2]

Recall that Cov[x2, y2] = E[x2y2] − E[x2]E[y2] so E[x2y2] = Cov[x2, y2] +
E[x2]E[y2]. We get as a result

E[ϕ2
a(x)ϕ

2
a(y)] =

(a2 + 1)2

4
(σ4

x + c).

Proposition 3. Consider a network that is He-initialized with a distribution
that has kurtosis κw and that has output random vectors y(l) at every layer l with
variance σ2

x. Let
cl = Cov[(y

(l)
i )2, (y

(l)
j )2]
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be the covariance between any two squared entries from y(l) and let κl = Kurt[y
(l)
i ]

be the kurtosis of every entry i in y(l), then the kurtoses of consecutive layers are
recursively related through the linear matrix difference equation

k(l+1) = A(l)k(l)

where k(l) = [κl, cl, 1]
T and

A(l) =


2(a4+1)κw

wl(a2+1)2
3(wl−1)
wlσ4

x

3(wl−1)
wl

2(a4+1)σ4
x

wl(a2+1)2
wl−1
wl

−σ4
x

wl

0 0 1

 .

Consequently, the relation between the input kurtosis and the output kurtosis at
depth d+ 1 is

k(d+1) =

(
d∏

l=0

A(d−l)

)
k(0).

Proof. We will derive the formula for κl+1, then for cl+1. We have E[y(l+1)
i ] = 0,

V ar[y
(l+1)
i ] = σ2

x, so κl+1 = Kurt[y
(l+1)
i ] = 1

σ4
x
E[(y(l+1)

i )4]. We can expand

E[(y(l+1)
i )4] = E[(

wl∑
j=1

W
(l+1)
ij ϕa(y

(l)
j ))4] using the multinomial theorem. Because

the weight matrix entries are i.i.d., zero-mean and symmetric, the terms with
the odd powers vanish. We get

E[(y(l+1)
i )4] =

wl∑
j=1

E[(W (l+1)
ij ϕa(y

(l)
j ))4]

+

wl∑
j,k=1
j ̸=k

(
4

2, 2

)
E[(W (l+1)

ij ϕa(y
(l)
j ))2(W

(l+1)
ik ϕa(y

(l)
k ))2].

Using Lemma 1, we find that

E[(W (l+1)
ij ϕa(y

(l)
j ))4] =

4

w2
l (a

2 + 1)2
κw

(a4 + 1)

2
σ4
xκl =

2(a4 + 1)

w2
l (a

2 + 1)2
κwσ

4
xκl.

We can get a closed-form formula for E[(W (l+1)
ij ϕa(y

(l)
j ))2(W

(l+1)
ik ϕa(y

(l)
k ))2] using

Lemma 2

E[(W (l+1)
ij ϕa(y

(l)
j ))2(W

(l+1)
ik ϕa(y

(l)
k ))2] =

=

(
2

wl(a2 + 1)

)2
(a2 + 1)2

4
(σ4

x + cl) =
σ4
x + cl
w2

l

.
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Putting the two above to the multinomial expansion of E[(y(l+1)
i )4] given in the

beginning, we get

E[(y(l+1)
i )4] =

2(a4 + 1)

wl(a2 + 1)2
κwσ

4
xκl + 6

(
wl

2

)
σ4
x + cl
w2

l

=
2(a4 + 1)

wl(a2 + 1)2
κwσ

4
xκl + 3wl(wl − 1)

σ4
x + cl
w2

l

Finally, we should divide E[(y(l+1)
i )4] by σ4

x to get

κl+1 =
2(a4 + 1)κw

wl(a2 + 1)2
κl +

3(wl − 1)

wlσ4
x

cl +
3(wl − 1)

wl
.

Next, consider cl+1 = Cov[(y
(l+1)
i )2, (y

(l+1)
j )2] for any i, j, i ̸= j

cl+1 = Cov[(y
(l+1)
i )2, (y

(l+1)
j )2] = E[(y(l+1)

i )2(y
(l+1)
j )2]− E[(y(l+1)

i )2]E[(y(l+1)
j )2]

= E[(
wl∑
k=1

W
(l+1)
ik ϕa(y

(l)
k ))2(

wl∑
k=1

W
(l+1)
jk ϕa(y

(l)
k ))2]− σ4

x

=
4

w2
l (a

2 + 1)2

wl∑
k1=1

wl∑
k2=1

E[ϕ2
a(y

(l)
k1
)ϕ2

a(y
(l)
k2
)]− σ4

x

where the sum
∑wl

k1=1

∑wl

k2=1 E[ϕ2
a(y

(l)
k1
)ϕ2

a(y
(l)
k2
)] is

wl∑
k1=1

wl∑
k2=1

E[ϕ2
a(y

(l)
k1
)ϕ2

a(y
(l)
k2
)] =

wl∑
k2=1
k2 ̸=k1

(a2 + 1)2

4
(σ4

x + cl) +

wl∑
k=1

a4 + 1

2
σ4
xκl

=
wl(wl − 1)(a2 + 1)2

4
(σ4

x + cl) +
wl(a

4 + 1)

2
σ4
xκl.

Putting it all together, we get

cl+1 =
2(a4 + 1)σ4

x

wl(a2 + 1)2
κl +

wl − 1

wl
cl −

σ4
x

wl
.

and k(l+1) = [κl+1, cl+1, 1]
T is of the desired form.

Now, we will show in Theorem 1, that with the dynamics derived in Proposition
3, for any valid k(0), κd will grow to infinity. To this end, we will first prove
three lemmas that describe the properties of matrices A(l) and their products.
In Lemma 3, we will show that any product of such matrices is of a form
parameterized with four positive parameters. Next, in Lemma 4, we will show
that any matrix A(l) has a positive eigenvalue that is strictly larger than 1. The
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proof of Lemma 4 uses the Perron theorem, which we provide with a reference
to a proof in the appendix in the supplement. We combine these two properties
in Lemma 5 to show that for any A = A(l) raised to a power m, all its positive
parameters will tend to infinity with m → ∞ and so its norm tends to infinity.
We use this property in the proof of Theorem 1.

Lemma 3. Consider the product of matrices B =
∏d

l=0 A(d−l) as given in
Proposition 3, with w > 1. B is of the form

B =

 α β
σ4
x

β

γσ4
x δ σ4

x(δ − 1)
0 0 1

 (1)

with γ > 0, α ≥ γ, δ > 0, β ≥ δ.

Proof. We prove the lemma by induction on d. For d = 0 we have B = A(0),
which is satisfied by the definition of A(0). Assume that (1) is satisfied for some
d ∈ N. Denote C =

∏d
l=0 A(d−l) and B = A(d+1)C. We can write

A(d+1) =

 α1
β1

σ4
x

β1

γ1σ
4
x δ1 σ4

x(δ1 − 1)
0 0 1

 ,

C =

 α2
β2

σ4
x

β2

γ2σ
4
x δ2 σ4

x(δ2 − 1)
0 0 1


with ∀i=1,2, γi > 0, αi ≥ γi, δi > 0, βi ≥ δi. A(d+1)C is α1α2 + β1γ2

α1β2+β1δ2
σ4
x

α1β2 + β1δ2
(γ1α2 + δ1γ2)σ

4
x γ1β2 + δ1δ2 σ4

x(γ1β2 + δ1δ2 − 1)
0 0 1

 .

If we set α = α1α2 + β1γ2, β = α1β2 + β1δ2, γ = γ1α2 + δ1γ2, δ = γ1β2 + δ1δ2,
we get that B = A(l+1)C is of the desired form with

γ = γ1α2 + δ1γ2 > 0, α = α1α2 + β1γ2 ≥ γ > 0,

δ = γ1β2 + δ1δ2 > 0, β = α1β2 + β1δ2 ≥ δ > 0.

Lemma 4. The largest eigenvalue of any matrix A(l) from Proposition 3 is
larger than 1.

Proof. Consider the matrix A(l) for some l = 0, ..., d. Its characteristic polynomial
is of the form

det(A(l) − λI) = (λ2 + bλ+ c)(1− λ)
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where λ2 + bλ + c is the characteristic polynomial of a matrix A(l)
− equal to

A(l) but with row 3 and column 3 removed. A(l)
− is positive and by the Perron

theorem it has two distinct real eigenvalues λmax and λmin such that λmax > 0
and λmax > |λmin|. We will show that λmax > 1.

Express λmax using trace and determinant of A(l)
− , λmax =

tr(A(l)
− )+

√
tr2(A(l)

− )−4det(A(l)
− )

2 ,
with tr(A(l)

− ) and det(A(l)
− ):

tr(A(l)
− ) =

2(a4 + 1)κw

wl(a2 + 1)2
− 1

wl
+ 1,

det(A(l)
− ) =

2(a4 + 1)(wl − 1)(κw − 3)

w2
l (a

2 + 1)2
.

We consider two cases for tr(A(l)
− ) and show that in both of them λmax > 1. If

tr(A(l)
− ) ≥ 2, then λmax > 1 because λmax >

tr(A(l)
− )

2 . Otherwise, if 1 ≤ tr(A(l)
− ) <

2, then

λmax(A
(l)
− ) > 1

⇔
√

tr2(A(l)
− )− 4det(A(l)

− ) > 2− tr(A(l)
− )

⇔ tr2(A(l)
− )− 4det(A(l)

− ) > 4− 4tr(A(l)
− ) + tr2(A(l)

− )

⇔ tr(A(l)
− ) > det(A(l)

− ) + 1

which is always satisfied, because for κw < 3, we have det(A(l)
− )+1 < 1 ≤ tr(A(l)

− ),
and for κw ≥ 3

det(A(l)
− ) =

2(a4 + 1)(wl − 1)(κw − 3)

w2
l (a

2 + 1)2

<
2(a4 + 1)(κw − 3)

wl(a2 + 1)2
<

2(a4 + 1)(κw − 1)

wl(a2 + 1)2
≤ tr(A(l)

− )− 1.

This proves that λmax > 1.

Lemma 5. Consider the matrix A = A(l) from Proposition 3 raised to the power
m. If m → ∞, then αm, βm, γm, δm from the representation of Am in the form
from Lemma 3 go to infinity.

Proof. By Lemma 4 λmax(A) > 1 so lim
m→∞

||Am|| = ∞, so it must be that at
least one of αm, βm, γm, δm goes to infinity. Consider four cases:

1. Assume αm tends to infinity. From the proof of Lemma 3, γm+1 = γ1αm +
δ1γm > γ1αm, so γm must tend to infinity. In the same way, δm+1 = γmβ1 +
δmδ2 > γmβ1, so δm must tend to infinity too. Because βm > δm, βm must
tend to infinity as well.
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2. Assume βm tends to infinity. From the proof of Lemma 3, αm+1 = αmα1 +
βmγ1, so αm must tend to infinity, and so γm and δm as shown above in 1.

3. Assume γm tends to infinity. Then αm must tend to infinity because αm ≥ γm
for any m, and so βm and δm must tend to infinity as shown above in 1.

4. Assume δm tends to infinity. Then βm must tend to infinity because βm ≥ δm
for any m, and so αm and γm must tend to infinity as shown above in 2.

Theorem 1. For any He-initialized network with widths bounded from below by
2 and from above by some wmax, the output-distribution kurtosis grows to infinity
with increasing depth for any input He random vector.

Proof. We can express the vector k(d+1) at depth d + 1 as k(d+1) = B(d)k(0)

with B(d) =
∏d

l=0 A(d−l) parameterized by αd, βd, γd, δd from Lemma 3. We can
write that

κd+1 = αdκ0 +
βd

σ4
x

c0 + βd.

Note that it must be that c0 ≥ −σ4
x, because

c0 = Cov[(y
(0)
i )2(y

(0)
j )2]

= E[(y(0)i )2(y
(0)
j )2]− E[y(0)i ]2E[y(0)j ]2 = E[(y(0)i )2(y

(0)
j )2]− σ4

x ≥ −σ4
x.

We can consider the output of the first layer as the actual input, so we can even
say that c0 = σ4

x(−1+ϵ) for some ϵ > 0, because c1 = γ1σ
4
xκ0+δ1c0+σ4

x(δ1−1) >
γ1σ

4
xκ0 − σ4

x for some γ1 > 0 and δ1 > 0.
We can write then that

κd+1 = αdκ0 +
βd

σ4
x

c0 + βd = αdκ0 + βdϵ.

To know that κd+1 goes to infinity with d → ∞, it is enough to show that
lim
d→∞

||B(d)|| = ∞, because it would imply that one of αd, βd, γd or δd goes to

infinity, in which case κd+1 goes to infinity. We will show that lim
d→∞

λmax(B(d)) =

∞, which implies that lim
d→∞

||B(d)|| = ∞. Because for any two matrices M1 and

M2 λmax(M1M2) = λmax(M2M1), we can consider λmax of a rearranged matrix
product

λmax(B(d)) = λmax

(
d∏

l=0

A(l)

)
= λmax

(
wmax∏
w=2

Amw
w

)
,

where Aw denotes a matrix A(l) from Proposition 3 for a specific width w, and
mw the number of occurrences of such matrices until depth d. With d → ∞, there
is at least one w for which mw → ∞. For such widths w, Amw

w behaves according
to Lemma 5. The product

∏wmax

w=2 Amw
w consists of a finite number of matrices

of the form from Lemma 3 and at least one matrix with all positive parameters
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from Lemma 3 going to infinity. In effect, the positive parameters from Lemma 3
for this product goes to infinity, which implies that λmax (

∏wmax

w=2 Amw
w ) goes to

infinity. As a result, with d → ∞, λmax(B(d)) → ∞.

We set the width to satisfy w > 1, but the same can be proven by allowing
for w = 1. This requires an additional assumption that either |a| ≠ 1 or κw ̸= 1.

5 Vanishing empirical variance

Theorem 1 has important consequences for He-initialized networks. That the
kurtosis grows to infinity implies that, for any finite sample size, the observed
empirical variance will converge in probability to zero. Combined with the
other properties preserved through He-initialization, this practically means that
virtually all outputs map arbitrarily close to zero for a sufficiently deep network.
And this happens despite the theoretical variance being constant.

Let us explain this implication more formally.6 For variance of the empirical
variance S2

n and the kurtosis, it holds that V ar[S2
n] =

(
κ− n−3

n−1

)
σ4

n , where
n is the sample size, κ is the kurtosis and σ2 is the theoretical variance. For
large n, we can approximate distribution of the ratio S2

n

σ2 by χ2(DFn)
DFn

, where
DFn = 2σ4

V ar[S2
n]

= 2n
κ−n−3

n−1

. This can alternatively be expressed in terms of the

gamma distribution S2
n

σ2 ∼ Γ (k = DFn

2 , θ = 2
DFn

). With kurtosis κ growing to
infinity, DFn shrinks to zero for any n ∈ N, so the shape parameter k shrinks
to zero and the scale parameter θ = 1

k grows to infinity. The probability density
function for this distribution is given as f(x; k, θ) = f(x; k, 1

k ) =
xk−1e−kxkk

Γ (k) . For
any x > 0, with k → 0, this converges to zero because the numerator converges
to a constant and the denominator grows to infinity. The speed of convergence is
faster for large x.

When training sufficiently deep networks on machines with finite precision
using finite datasets, we will observe outputs to be zeroed out. As a result,
propagated gradients will be zeros and the weights of the network will remain at
their initialization values.

6 Experiments

Theorem 1 shows that He-initialization suffers from the vanishing empirical
variance problem. We now hypothesize that problems with empirical variance
concern all fully random initialization methods that initialize weight matrices
with off-diagonal entries, because this induces increased dependence of outputs.
If the theoretical variance is kept constant or decreases, the empirical variance
vanishes, otherwise it explodes. Here, we present empirical evidence supporting
this hypothesis. We verify it experimentally for five state-of-the-art random
6 We refer to [21] for a detailed treatment and proofs.
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initialization methods: Glorot by [8], He by [11], orthogonal by [22], GSM by [5],
and MetaInit by [6]. We also show that ZerO proposed by [27] is superior to all
these methods in very deep regimes.

All experiments are performed on constant-width ReLU networks on MNIST
[18] and CIFAR10 [17]. The inputs are preprocessed so that the means of all
channels are zero and the variances are one. The experiments were run on a
machine with a single Intel i7-11850H CPU. The code is available at https:
//github.com/Grzejdziok/vanishing-empirical-variance.

6.1 The necessity of small kurtosis for He-initialization

We performed experiments to illustrate the negative impact of high output
kurtosis at initialization on training. In the case of He-initialization, it is possible
to calculate the theoretical output kurtosis recursively applying the formula from
Proposition 4.3, given κ0 and c0 for the input He random vector.

103 107 1011 1015
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

MNIST

103 107 1011 1015
0.1

0.2

0.3

0.4 CIFAR10

Fig. 1. Test accuracy after 500 gradient steps vs output distribution kurtosis at initial-
ization for networks of varying widths, depths, and initialization distributions trained
on MNIST and CIFAR10. Results for 330 experiments per dataset.

We estimated the values for MNIST and CIFAR10 using 107 random samples.
For MNIST we got c0 = 0.71, κ0 = 3.95 and for CIFAR10 we got c0 = 0.10,
κ0 = 3.28. We trained networks of various depths and widths to observe the
relation between different values of kurtosis at initialization and test accuracy.
We trained constant-width He-initialized networks twice for each of all tuples
(width, depth, initialization distribution) for widths and depths from 5 to 50 with
step of 5, and the weight initialization distributions Bernoulli (κw = 1), uniform
(κw = 1.8), normal (κw = 3). We used Adam optimizer [16] with learning rate of
10−4, β1 = 0.9, β2 = 0.999 and no weight decay.

We plotted test accuracy after 500 gradient steps over output kurtosis at
initialization. The results are given in Figure 1. From the plots, we can see that
networks with large output kurtosis at initialization cannot be effectively trained.

https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
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p=0.900
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p=0.999
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p=0.999

0 20 40 60 80 10010−3
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1023

1036
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p=0.900
p=0.990
p=0.999

0 20 40 60 80 10010−3

10−2

10−1

100
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p=0.900
p=0.990
p=0.999

Fig. 2. Estimated quantiles of the output empirical variance distribution over depth
given the whole CIFAR10. The plots use a logarithmic scale. ZerO is deterministic, so
all its quantiles are equal.

6.2 SOTA initialization and empirical variance problem

To see whether the problems with empirical variance occur for other state-of-the-
art initialization methods, we performed an experiment to estimate the empirical
variance distribution at the output.

For all random initialization methods considered, we initialized 10,000 neural
networks (1,000 for MetaInit) of constant width w = 10 and depth d = 100 and
calculated the empirical variance of a single output given the whole CIFAR10
training set as input. We then calculated quantiles at 0.9, 0.99, and 0.999 over
all different initializations and plotted these against layer depth in Figure 2.

We observe that for all random initialization methods except MetaInit 90%
networks will have empirical variance lower than 10−3 after 80 layers and all
quantiles monotonously decrease after 40 layers. For MetaInit, empirical variances
explode. We observe a different behavior for ZerO, which initializes most layers
to identities. It keeps the empirical variance constant after the first layer.

6.3 Empirical variance problem: practical significance

To evaluate the practical significance of the problems with empirical variances
observed in the previous section, we trained neural networks of varying depths
on CIFAR10 and evaluated their test accuracy after 500 gradient steps. We used
Adam [16] as an optimizer with β1 = 0.9, and β2 = 0.999 without weight decay.
We trained networks for two widths: 1) width 10 and depths from 0 to 100 with
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0 20 40 60 80 100
0.1

0.2

0.3

0.4 w=10

0 100 200 300 400 500
0.1

0.2

0.3

0.4 w=200

Glorot (normal dist.)
orthogonal
He (normal dist.)
gsm
metainit
ZerO

Fig. 3. Test accuracy after 500 gradient steps over network depth for fully connected
constant-width ReLU networks trained on CIFAR10. The curves indicate the means
and the bars indicate the minima and maxima over 5 repetitions.

a step of 10 and learning rate of 10−4, 2) width 200 and depths from 0 to 500
with a step of 50 and learning rate of 10−5.

The results are given in Figure 3. We can see that all random initialization
methods fail to train in very deep regimes and are inferior to ZerO, which does
not suffer from the problems with empirical variance.

7 Discussion

By analyzing the dynamics of the output’s kurtosis in He-initialized networks, we
identified two new problems in very deep neural networks: the exploding kurtosis
and the vanishing empirical variance problems. Our experiments show that issues
with exploding or vanishing empirical variance concern not only He-initialization
but also other state-of-the-art random initialization methods such as Glorot [8],
GSM [5], or MetaInit [6]. All of these methods fail to train very deep networks,
while our experiments show that with deterministic initialization methods like
ZerO [27], successful training is possible.

Our contribution is primarily theoretical and, in our experiments, we ana-
lyzed a toy architecture of constant-width fully connected ReLU networks that
illustrated our theoretical results. However, we hypothesize that our main result
about exploding kurtosis extends to setups that are commonly used in practice,
like transformers or convolutional networks. The addition of skip connections
cannot stop the growth of kurtosis because kurtosis explodes even for networks
without activation function, which is equivalent to setting the negative slope
parameter a to 1 in our analysis. Moreover, convolutional layers will induce even
more dependency of layer outputs due to parameter sharing, so we expect the
output kurtosis to grow even faster.

It is unclear whether using activation functions other than ReLU could
mitigate this issue. Bounded activation functions like tanh or sigmoid reduce the
theoretical variance of their inputs, yet their impact on kurtosis is unclear.
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A Proof of Proposition 3.2

We first prove the following lemma.

Lemma 6. Let x be a zero-mean, symmetric random variable with V ar[x] = σ2
x.

Then E[ϕ2
a(x)] =

(a2+1)
2 σ2

x.

Proof.

E[ϕ2
a(x)] =

∞∫
−∞

ϕ2
a(x)p(x)dx =

0∫
−∞

a2x2p(x)dx+

∞∫
0

x2p(x)dx

= a2
0∫

−∞

x2p(x)dx+

∞∫
0

x2p(x)dx =
1

2
a2

∞∫
−∞

x2p(x)dx+
1

2

∞∫
−∞

x2p(x)dx

=
a2 + 1

2
σ2
x

Below, we prove Proposition 3.2.

Proposition 4 (He-initialization). If for all l = 1, ..., d weight matrices W(l)

are i.i.d., zero-mean, and symmetric with variance equal to 2
wl(a2+1) , then for an

input He random vector x with variance σ2
x the output random vector y(d) is a

He random vector with variance σ2
x.

Proof. Consider a He random vector x with variance σ2
x as input. We prove the

proposition by induction on d starting from the base case of d = 0 which is
satisfied by assumptions on the input vector. Assume that it holds for some l.
For l + 1, we have y(l+1) = W(l+1)ϕa(y(l)). Consider a specific entry y

(l+1)
k =∑wl

i=1 W
(l+1)
ki ϕa(y

(l)
i ). It is symmetric as it is a sum of symmetric random variables.

As it is a sum of uncorrelated variables, its variance is sum of variances of the
summands

V ar[y
(l+1)
k ] =

wl∑
i=1

V ar[W
(l+1)
ki ϕa(y

(l)
i )]

=

wl∑
i=1

E[(W (l+1)
ki )2]E[ϕ2

a(y
(l)
i )]− E[W (l+1)

ki ]2E[ϕa(y
(l)
i )]2

=

wl∑
i=1

V ar[W
(l+1)
ki ]

(a2 + 1)

2
σ2
x =

wl∑
i=1

2

(a2 + 1)wl

(a2 + 1)

2
σ2
x

=

wl∑
i=1

σ2
x

wl
= σ2

x.
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Lastly, consider Cov[y
(l+1)
k , y

(l+1)
j ] for k ̸= j

Cov[y
(l+1)
k , y

(l+1)
j ] = E[y(l+1)

k y
(l+1)
j ]− E[y(l+1)

k ]E[y(l+1)
j ]

= E[(
wl∑
i=1

W
(l+1)
ki ϕa(y

(l)
i ))(

wl∑
i=1

W
(l+1)
ji ϕa(y

(l)
i ))]

= E[
wl∑

i0=1

wl∑
i1=1

W
(l+1)
ki0

ϕa(y
(l)
i0
)W

(l+1)
ji1

ϕa(y
(l)
i1
)]

=

wl∑
i0=1

wl∑
i1=1

E[W (l+1)
ki0

ϕa(y
(l)
i0
)W

(l+1)
ji1

ϕa(y
(l)
i1
)]

=

wl∑
i0=1

wl∑
i1=1

E[W (l+1)
ki0

]E[ϕa(y
(l)
i0
)W

(l+1)
ji1

ϕa(y
(l)
i1
)] = 0.

So all entries in yl+1 are uncorrelated.

B Perron theorem

We provide the Perron theorem as given in [14]. We refer to this book for further
details and proofs.

Theorem 2 (Perron). Let A be a n× n matrix which is irreducible and non-
negative and n ≥ 2. Let ρ(A) denote the spectral radius of A. Then:

1. ρ(A) > 0,
2. ρ(A) is an algebraically simple eigenvalue of A,
3. there is a unique real vector x such that Ax = ρ(A)x and x1+x2+...+xn = 1;

this vector is positive,
4. there is a unique real vector y such that yTA = yT ρ(A) and y1+y2+...+yn =

1; this vector is positive,
5. |λ| < ρ(A) for every eigenvalue λ of A such that λ ̸= ρ(A),
6. (ρ(A)−1A)m → xyT as m → ∞.
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